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INTRODUCTION

This paper addresses the problem of autonomous navigation of a micro aerial vehicle (MAV) for inspection
and damage assessment inside a constrained shipboard environment, which might be perilous or inaccessi-
ble for humans, especially in emergency scenarios. The environment is GPS-denied and visually degraded,
containing narrow passageways, doorways, and small objects protruding from the wall. This causes existing
two-dimensional LIDAR, vision, or mechanical bumper-based autonomous navigation solutions to fail. To
realize autonomous navigation in such challenging environments, we first propose a robust state estimation
method that fuses estimates from a real-time odometry estimation algorithm and a particle filtering localization
algorithm with other sensor information in a two-layer fusion framework. Then, an online motion-planning
algorithm that combines trajectory optimization with a receding horizon control framework is proposed for fast
obstacle avoidance. All the computations are done in real time on the onboard computer. We validate the system
by running experiments under different environmental conditions in both laboratory and practical shipboard
environments. The field experiment results of over 10 runs show that our vehicle can robustly navigate 20-m-
long and only 1-m-wide corridors and go through a very narrow doorway (66-cm width, only 4-cm clearance on
each side) autonomously even when it is completely dark or full of light smoke. These experiments show that
despite the challenges associated with flying robustly in challenging shipboard environments, it is possible to
use a MAV to autonomously fly into a confined shipboard environment to rapidly gather situational information
to guide firefighting and rescue efforts. © 2016 Wiley Periodicals, Inc.

aim to develop a MAV that is capable of autonomously

Over the past few years, micro aerial vehicles (MAVs) have
gained wide popularity in both military and civil domains.
For example, MAVs have made a huge impact in the ar-
eas of surveillance and reconnaissance. In this paper, we
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navigating through a ship to aid in fire control, damage as-
sessment, and inspection, all of which might be dangerous
or inaccessible for humans. The idea is that the drone will
be released into a ship’s potentially dark, smoke-filled hall-
ways in the event of an emergency and will proceed to fly
autonomously through the vessel, looking for fires, mea-
suring heat, and locating any personnel who may be found
along the way. After reaching its destination, the MAV will
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Figure 1.

Autonomous MAV for fire detection inside a ship: The left picture shows the MAV’s autonomous flight through

doorways. The right picture shows a testing scenario involving fire.

return and provide the information it has collected to the
operator. The operator interface displays the location struc-
ture and video information, and the operator assesses any
structural damage and knows the locations of fires and per-
sonnel inside the ship. An illustrative picture is shown in
Figure 1. The key technology for realizing this goal is au-
tonomous navigation in such a constrained, visually degraded,
and GPS-denied environment.

Recently, there have been several MAV systems
designed for vessel environments (Bonnin-Pascual,
Garcia-Fidalgo, & Ortiz, 2012; Eich, Bonnin-Pascaul, Gracia-
Fidalgo, & Ortiz, 2014; Garcia-Fidalgo, Ortiz, Bonnin-
Pascual, & Company, 2015; Ortiz, Bonnin-Pascual, & Garcia-
Fidalgo, 2013). Among these, most are designed for
visual inspection, which occurs autonomously or semi-
autonomously inside of the spacious and bright vessels
or ships to collect images for later analysis. However, to
the best of our knowledge, there have been very few, if
any, autonomous MAV navigation systems demonstrated
in constrained, visually degraded, and GPS-denied shipboard
environments for fire detection or rescue purpose. For
successful operation in such environments, we need to
address several challenging problems compared to the
existing MAVs designed for vessels (Eich et al., 2014; Garcia-
Fidalgo et al., 2015) or indoor environments (Droeschel
et al.,, 2015; Grzonka, Grisetti, & Burgard, 2012; Nieuwen-
huisen, Droeschel, Beul, & Behnke, 2015; Shen, Michael, &
Kumar, 2011). First, the MAV should be small enough to
travel in narrow corridors (1 m width) with narrower door-
ways (66 cm width) inside of the vessel. Therefore, only
lightweight sensors, which provide limited measurement
range and noisy data, can be used due to the payload limita-
tions. Second, the onboard computational resources are very
limited, while every module should run in real-time, posing

great challenges for state estimation and motion planning.
Third, since the environment may be dark and smoke-filled,
we are unable to use state-of-the-art visual navigation meth-
ods. Our mean is that even you put some LED lights on the
MAV, sometimes you still could not get useful images under
hazy conditions, for example in dense smoke. Therefore, I
think the original sentence is correct: Though putting LED
lights on the MAV can provide better illumination, it might
not output a useful RGB image under hazy conditions. In
addition, clear corridors with few geometric features, or
corridors with many small objects on the wall, pose a great
difficulty for accurate pose estimation and obstacle avoid-
ance. In addition, air turbulence from the MAV in confined
spaces makes it difficult to achieve precise control, thus the
MAV is not as stable as in a spacious environment. This
makes state estimation and motion planning more difficult.

In this paper, we present a MAV system that can au-
tonomously navigate inside this type of challenging (con-
strained, visually degraded, and GPS-denied) shipboard en-
vironment using only onboard sensors and processors. To
address the above challenges, we extend our previous work
(Fang & Scherer, 2015; Fang et al., 2015) by using a multisen-
sor fusion framework to obtain robust, accurate, and high-
frequency state estimates to enable our MAV to go through
narrow doorways autonomously. We first propose a fast
odometry estimation method that can directly recover the
relative pose from a series of depth images, which can work
very well in challenging visually degraded environments.
Then, we fuse the odometry with inertial measurement unit
(IMU) information, and we feed the fused visual-inertial
odometry into a particle filter to realize real-time six-degree-
of-freedom (6DoF) localization in a given three-dimensional
(3D) map. After that, the pose estimates from visual-
inertial odometry and localization are fused with other
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sensor information to obtain fast and robust state estimates
for real-time control. Furthermore, we present an online
motion-planning algorithm using a modified CHOMP
trajectory optimization method under a receding horizon
control framework to obtain a minimum-snap collision-free
trajectory for navigation in case of damage or dynamic
obstacles inside the shipboard. As a further contribution,
our implementations of this autonomous navigation system
are available as open-source robot-operating system (ROS)
packages.!

We demonstrate the effectiveness of our system
through both laboratory and field experiments. The field
experiment was performed in a constrained shipboard en-
vironment containing a 20-m-long, 1-m-wide corridor and
a 66-cm-wide doorway. The width of the vehicle is 58 cm,
leaving only 4 cm clearance on both sides. We conducted
more than 10 runs under various environmental conditions,
from normal to completely dark and smoke-filled environ-
ments, to demonstrate the autonomous navigation capabil-
ities of our MAV.

The remainder of this article is organized as follows.
Section 2 surveys related work. In Section 3, we present an
overview of our system. Section 4 explains the details of
the proposed odometry estimation, the localization algo-
rithms running on the navigation controller, and the state
estimation algorithm running on the flight controller. In
Section 5, we introduce our motion-planning algorithms,
which consist of a global path-planning module, an on-
line obstacle-mapping module, and a local motion-planner
module. Section 7 describes the laboratory and field exper-
iments, evaluating the accuracy, robustness, and real-time
performance of our proposed methods and demonstrating
the performance of our system under various environmen-
tal conditions. In Section 8, we discuss lessons learned from
this project. We summarize and conclude in Section 9.

2. RELATED WORK

In recent years, a number of autonomous navigation solu-
tions have been proposed for MAVs. Those solutions mainly
differ in the sensors used for perception in the autonomous
navigation problem, the amount of processing performed
onboard/offboard, and the assumptions made about the
environment.

2D LIDARs have been used extensively and success-
fully for autonomous navigation of MAVs for their accu-
racy and low latency (Dryanovski et al., 2013; Grzonka
et al., 2012; Shen et al., 2011). However, those systems are
usually only suitable for structured or 2.5D environments.
Compared to 2D LIDARs, 3D LIDARs, which provide more
information on the surrounding environments, are widely
used on ground mobile robots for autonomous navigation
(Kr, Colas, Furgale, & Siegwart, 2014; Niichter, Lingemann,

1https: / /bitbucket.org/ castacks /
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Hertzberg, & Surmann, 2007). However, 3D LIDARs are of-
ten much more expensive and heavier than 2D LIDARs.
Up to now, such 3D laser scanners have rarely been used
on lightweight MAVs due to limited payload and compu-
tation resources. In the past few years, there have also been
some researchers who tried to use a customized 3D LIDAR
(rotating 2D LIDAR) for autonomous navigation of MAVs
(Droeschel et al., 2015; Nieuwenhuisen et al., 2015; Scherer
et al.,, 2012). However, these “lightweight” rotating 2D LI-
DARSs (usually more than 400 g) are still too heavy for small
aerial vehicles aiming to work in very confined environ-
ments. Recently, there have also been many vision-based
navigation systems because cameras can provide rich infor-
mation and have low weight. For example, a stereo camera
is used in Fraundorfer et al. (2012) and Schauwecker & Zell
(2014), and a monocular camera with IMU is used in Wu,
Johnson, Kaess, Dellaert, & Chowdhary (2013), Scaramuzza
et al. (2014), and Weiss et al. (2011), but vision is sensitive
to illumination changes, and the camera could not func-
tion in dark or smoky environments. More recently, RGB-D
cameras have become very popular for autonomous navi-
gation of indoor MAVs (Fang & Scherer, 2014; Flores, Zhou,
Lozano, & Castillo, 2014; Huang & Bachrach, 2011; Valenti,
Dryanovski, Jaramillo, & Str, 2014) because they can pro-
vide both color and depth images. For example, in Huang
& Bachrach (2011), a RGB-D visual odometry method is pro-
posed for real-time pose estimation of a MAV, and a 3D map
is created offline. In Valenti et al. (2014), a fast visual odom-
etry method is used for pose estimation, and a 3D visual
SLAM is used for constructing a 3D octomap in real time.
Unfortunately, the existing autonomous navigation so-
lutions cannot work in our case because our application
environment is a confined, complex, visually degraded 3D
environment that may be very dark or filled with smoke. For
example, for state estimation, vision-based methods (Huang
& Bachrach, 2011; Weiss et al., 2011) could not work in our
case because our environment is potentially dark or smoke-
filled. In addition, for obstacle avoidance, 2D LIDAR-based
methods are also unqualified for this complex environment
because they only perceive planar information while there
are many small objects (e.g., slim cables and pipes) pro-
truding from the wall in our environment. Although 3D LI-
DARs combined with other sensors have been successfully
used for obstacle detection and autonomous navigation of
MAUVs in Droeschel et al. (2015) and Nieuwenhuisen et al.
(2015), unfortunately those 3D LIDARs are still too heavy
for our MAV. In their work, they usually use Octocopter
(size: 85 cmx85 cmx35 cm) as their experiment platform,
which is much bigger than ours (size: 58 cmx58 cmx32 cm),
and it is also too big for our application environments (the
doorway is only 66 cm wide). In addition, their systems re-
quire stereo visual odometry for scan assembly, which also
cannot work well in our visually degraded environments.
In addition, the motion-planning methods of many exist-
ing systems either compute paths offline (Dryanovski et al.,
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2013; Valenti et al., 2014) or rely heavily on prior maps for
obstacle detection (Grzonka et al., 2012), while in our case
we want the vehicle to be able to avoid unknown obstacles.
Some papers generate angles (Fraundorfer et al., 2012) or
waypoints (Shen et al., 2011) online, but those commands
are not smooth enough and are not suitable for high preci-
sion control in confined shipboard environments.

In this paper, we present a robust autonomous naviga-
tion system that can work in challenging practical shipboard
environments. In our system, we mainly use depth images
for state estimation and motion planning, which can work in
completely dark or even light smoke-filled environments.
In addition, all the components of the system run on an
onboard ARM-based embedded computer.

In terms of state estimation of MAVs, it is mainly com-
posed of two subproblems, namely odometry estimation (rel-
ative pose estimation) and localization (absolute pose esti-
mation). For odometry estimation, many methods have been
proposed with stereo cameras, monocular cameras, RGB-D
cameras, and 2D laser scanners. In Achtelik et al. (2009), an
odometry estimation method based on a stereo camera and a
2D laser scanner is proposed for indoor MAVs. This method
uses a sparse visual feature matching and scan matching al-
gorithm to compute odometry. However, this method runs
on the ground station computer (not the onboard computer)
in their paper. A monocular visual odometry method that
can run very fast on an embedded computer is proposed in
Forster et al. (2014). However, monocular visual odometry
can only estimate the odometry up to an unknown scale.
To solve the unknown scale problem, IMU information is
often used (Weiss et al., 2011, 2012) to estimate the absolute
metric scale. In recent years, many RGB-D visual odometry
methods have also been proposed. For example, Huang &
Bachrach (2011) propose the Fovis RGB-D odometry estima-
tion method for MAVs. In Kerl et al. (2013), a dense RGB-
D visual odometry that minimizes the photometric error
between two RGB images is proposed. Pomerleau, Colas,
Siegwart, & Magnenat (2013) develop an ICP-based odom-
etry estimation method that only uses depth information.
However, this method can only run at about 10 Hz on our
embedded computer (Odroid XU3), and the CPU usage is
very high. For localization, there are several ways to locate
a robot on a given map. The first kinds of methods are 2D
methods (Angeletti & Valente, 2008; Grzonka, Grisetti, &
Burgard, 2009). However, those methods usually only work
in structured or 2.5D environments. Some people also use
a floor plan for the localization by using a RGB-D camera
(Biswas & Veloso, 2012). This method is efficient and fast,
but limited to environments with many line features. The
second kinds of methods are 3D methods. A common idea
is to create a global point cloud map and then use ICP (Besl
& McKay, 1992) or NDT (Stoyanov et al., 2012) -based meth-
ods to match the current point cloud to the global map.
However, those methods are usually very slow. Some re-
searchers also try to use 3D planes as the global map to

locate the robot (Cupec, Nyarko, Filko, Kitanov, & Petrovi¢,
2013; Fallon, Johannsson, & Leonard, 2012). For example,
Fallon et al. (2012) propose the Kinect Monte Carlo Localiza-
tion (KMCL) method. However, this method only estimates
x, y,and yaw using the particle filter, and it requires a pow-
erful GPU to run in real time. Oishi Oishi et al. (2013) use a
particle filter to track the robot’s pose in a known 3D NDT
map. However, this method is still too slow to run on a MAV.
Another method is an Octomap-based method (Maier, Hor-
nung, & Bennewitz, 2012). But in their paper, they have a
relatively accurate and robust odometry from the encoders,
and everything is running on a remote desktop. Bry et al.
(2012) also propose a real-time localization algorithm based
on an Octomap for a fix-wing MAV. However, they use a
highly accurate 2D laser scanner for sensing, which is too
heavy to be used on our small quadrotor MAV.

For motion planning, there are typically two categories:
optimization methods and discrete or randomized search
methods. Optimization methods try to minimize some
objectives, such as minimal traversal time or control in-
put energy subject to the differential motion constraints
and collision avoidance. Differential dynamic programming
(Mayne, 1966) is a typical optimization approach. More re-
cently, covariant gradient optimization (CHOMP) (Ratliff
et al.,, 2009) achieved a faster performance by using a
covariant gradient technique. It can operate in discrete
occupancy-grid maps, while conventional numerical op-
timization requires the analytical representation of obsta-
cles. For a special nonlinear system that is differentially flat
(Murray, 2009; Murray et al., 1995), such as a quadrotor, opti-
mization can be performed efficiently in the flat output space
instead of the original configuration space. In this space, the
states and control inputs of the system can be mapped an-
alytically to the flat output variables and their derivatives.
Therefore, during optimization, we do not need to explicitly
consider the motion constraints. If we represent the flat out-
put variables as a sequence of differential trajectories such as
polynomials or B-splines, optimization over the spline pa-
rameters could be efficiently solved by analytic or numer-
ical methods such as quadratic programming (Mellinger
& Kumar, 2011). Bry et al. applied this method to an ag-
gressive flight of aerial vehicles (Bry, Richter, Bachrach, &
Roy, 2015). As the second category, search-based approaches
usually discretize the trajectories as feasible action spaces,
and then search a sequence of actions using a graph rep-
resentation such as A*. This idea has been adapted to dif-
ferent styles (Likhachev et al., 2008) and widely used in
autonomous vehicles (Ferguson et al., 2008). The optimality
of these grid search algorithms is guaranteed up to the grid
resolution, but the complexity grows exponentially with the
dimensionality of state space. Therefore, it is unsuitable for
high-dimensional planning problems such as MAV with 12
states. Different from A*, randomized search methods such
as RRT* (rapidly exploring random tree) randomly sam-
ple nodes in configuration space and then search the path

Journal of Field Robotics DOI 10.1002/rob
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using the tree. They have been proven to have probabilistic
completeness and asymptotic optimality in the limit of in-
finite samples (Karaman & Frazzoli, 2011), and they are
effective for high-dimensional state spaces, which were
used for MAV navigation by Shen et al. (2011).

3. SYSTEM OVERVIEW

To make our robot compact and have a high payload, our
MAYV is designed based on a quadrotor configuration. Due
to the space constraints presented in the shipboard envi-
ronment (the doorway is only 66 cm wide), we need a MAV
that is as small as possible while still being able to carry the
sensor payload. A picture of our system is shown in Fig-
ure 2(a). It is a quadrotor micro aerial vehicle with a size of
58 cmx 58 cmx32 cm and a maximum payload of about 600

There are two onboard computers. One is an ARM-
based embedded computer (Odroid XU3, about 70 g) that
is responsible for high-level task processing, such as odom-
etry estimation, localization and motion planning, etc. The
other is a Pixhawk Flight Controller Unit (FCU, about 38 g),
which is used for multisensor data fusion and real-time con-
trol. A forward-looking RGB-D camera (Asus Xtion, about
100 g after being stripped down) is used for pose estimation
and motion planning. A downward-looking optical flow
camera (PX4Flow, about 18 g) is used for velocity estima-
tion. Lastly, a point laser (SF02 Laser Rangefinder, about 69
g) and the sonar (HRLV-MaxSonar-EZ4) on PX4Flow are
used for height estimation. Furthermore, a thermal cam-
era (FLIR-tau, about 200 g) is used for fire detection. The
forward-looking infrared (FLIR) camera has the ability to
see through smoke conditions while traditional visible light
cameras fail. We also carry our own inertial measurement
unit (MicroStrain 3DM-GX3-35, about 23 g) to help estimate
the pose of the vehicle.

To get robust, low-delay state estimates, a two-layer
estimation architecture is designed, as shown in Figure
2(b). The first-layer pose estimation algorithms that esti-
mate the 6DoF pose runs on the embedded computer, in-
cluding odometry estimation and localization both running
at 15 Hz. The second-layer state estimation module esti-
mates the 6DoF pose and velocity by fusing the estimates
from odometry, localization, optical flow, and raw data from
sensors (IMU, sonar, and point LIDAR) on the FCU, which
runs at 50 Hz to enable accurate position control. This re-
dundant system improves the robustness and safety of our
MAV. Even if some of the sensors do not work in certain chal-
lenging environments, the whole system can still work. The
two layers communicate with each other through a serial in-
terface. The software running on the embedded computer
is developed based on the ROS middleware. The outputs
(x,y,z, ¥) of the local planner (running on the embedded
computer at 2 Hz) and the high-frequency state estimates
(position and velocities) from the FCU are given to a hier-
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archical control approach for fast and accurate control. It is
composed of an outer position controller running at 100 Hz
and an inner attitude controller running at 250 Hz.

4. REAL-TIME STATE ESTIMATION ALGORITHMS

Real-time and robust state estimation is critical for tasks
that require precise control, such as indoor flight, obstacle
avoidance, and autonomous landing. In this paper, we first
propose a fast and robust odometry estimation method that
can work in different indoor environments. Then, we fuse
the odometry with an IMU using an unscented Kalman filter
(UKF), which can give us much faster and smoother velocity
estimates. After that, we feed the odometry into a particle
filter localization algorithm, which can estimate the absolute
6DOF state in a given 3D map, and we track it in real time
during the mission. Finally, we fuse odometry, localization,
and other sensor information in a KF framework to get very
robust and fast state estimates for real-time control.

4.1. Real-time Odometry Estimation

In this paper, a fast depth odometry is proposed to calcu-
late the frame-to-frame motion estimation. Our method is
motivated by the pioneering work of Horn (Horn & Harris,
1991). It works directly on the depth image without detect-
ing any features, which is much faster than state-of-the-art
ICP-based methods (Pomerleau et al., 2013).

Let a 3D point P = (X, Y, Z)T (measured in the depth
camera’s coordinate system) be captured at pixel position
p = (x, )T in the depth image Z,. This point undergoes a
3D motion AP = (AX, AY, AZ)T, which results in an im-
age motion Ap between frames f; and ;. Given that the
depth of the 3D point will have moved by AZ, the depth
value captured at this new image location p + Ap will have
consequently changed by this amount:

Zia(p + Ap) = Z(p) + AZ. 1)

This equation is called a range change/flow constraint equation
(Horn & Harris, 1991; Spies et al., 2002; Yamamoto et al.,
1993). Taking the first-order Taylor expansion of the term
Z,+1(p + Ap) in Eq. (1), we can obtain

Zia(p+Ap) = Zia(p) +VZia(p) - Ap
= Z.(p) + AZ, (2)
where VZ,(p) is the gradient of the depth image
VZHrl(p) = (Z.\a Zx)
For a pinhole camera model, any small 2D displace-
ment Ap in the image can be related directly to the 3D
displacement AP, which gave rise to it by differentiating

the perspective projection function with respect to the com-
ponents of the 3D position P,

p _Ap |50 -XE 3
oP AP |0 L vL |

Y
VA

where f, and f, are the normalized focal lengths.
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(a) Customized micro aerial vehicle platform. (b) Overview of the entire autonomous system. The high-level software

includes odometry estimation, localization, planning, and obstacle avoidance running on an embedded computer. The low-level
software includes state estimation, trajectory controller, and attitude controller running on the flight controller unit (FCU). The

pink blocks are described in detail in this paper.

Under a small rotation assumption, if the sensor moves
with instantaneous translational velocity v = (v,, vy, v,)”
and instantaneous rotational velocity o = (w,, ,, )" with
respect to the environment, then the point P appears to
move with a velocity

dP
— =AP=—v—-—wxP
dt
0 -zY -10 0
Z 0 -X0-10 [¢& 4)
-Y X 0 0 0 -1

with respect to the sensor, where § = [w,, ®,, @, v,, vy, v.]".
Substituting Egs. (3) and (4) into Eq. (2), we can obtain

Lo -xL47f0 -z v -1 0 0
(Z.Zy,-1)| 0 2 —vL||Z 0 -Xx 0 -1 0 |¢
00 1 -Y X 0 0 0 -1
A
=Zi(p) = Zia(p). ®)
which can be rewritten as
A& = Z,(p) = Zia(p). (6)

This equation generates a pixel-based constraint relat-
ing the gradient of the depth image VZ,,; and the temporal
depth difference to the unknown camera motion &. If there
are n pixels in the image, then we can get n such equations
with only six unknowns. Here, we use a least-squares error

minimization technique to solve the set of equations. After
we get the rotational velocity w = (o,, w,, ®.)" and transla-
tional velocity v = (v,, vy, v;)7, the rigid body motion AT
between ¢ and ¢ + 1 can be calculated directly using the
exponential map (Murray, Li, & Sastry, 1994):

exp : 5¢(3) — SE(3);& —> AT, 7)
AT =&, (8)

where £ is known as twist.

By computing the relative transformations AT from
the depth images Z, and Z,;; and then concatenating the
transformations, we can recover the full trajectory of the
camera.

In practice, since least-squares estimators are particu-
larly sensitive to outliers, we need to remove the potential
outliers to get a robust and correct estimation. Therefore,
pixels where the difference in depth between current and
old images exceeds 50 mm are excluded from the estimator.
In addition, all the edge points and isolated sparse points
are removed from the estimator. Furthermore, in order to
improve the computation speed, the depth image is uni-
formly downsampled to 80 x 60 for the final estimation. It
should be noted that in our system, in order to improve
the efficiency, no keyframe, image pyramid, or local bundle
adjustment techniques are used to reduce the local drift. We
will show later in our experiments that even without those
techniques, our method still works very well in various
environments.

Journal of Field Robotics DOI 10.1002/rob
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4,2. Visual-inertial Odometry

To conserve CPU resources, we set the sampling rate of
RGB-D images at 15 Hz. Therefore, our visual odometry
outputs the transform at 15 Hz, and this estimation can
be fed into FCU’s position KF to fuse with other data for
pose control. However, we found that only using the visual
odometry is not smooth and fast enough for the KF filtering.
The latency makes the filtering not smooth sometimes. In
addition, because only depth images are used in odometry
estimation, in places where there are not enough geomet-
ric constraints the odometry will suffer from degeneration,
which will lead to incorrect estimation. To ameliorate those
problems, we mount a Micro-Strain IMU, then use a loosely
coupled UKEF to fuse the odometry and IMU information,
and feed the fused result to the FCU’s position KE. Our fil-
ter robustly fuses measurements from visual odometry and
IMU. The UKEF is chosen based on the demonstrated im-
provements over the extended Kalman filter (EKF) for bet-
ter estimation and filter consistency of nonlinear systems.
The multisensor fusion framework is presented in detail in
our previous work (Chambers et al., 2014). By doing so, our
system became more stable than without the fusion. The
possible reasons are as follows: (i) by fusing IMU and vi-
sual odometry, we can get a smoother odometry estimation;
(ii) the latency is dramatically reduced when using the UKF
output because our UKF runs at 50 Hz.

4.3. Real-time 6DoF Localization

From Section 4.2, we can get a robust odometry estima-
tion, however it will definitely drift after a long running
time. Although techniques such as keyframe, local map, or
local bundle adjustment can reduce local drift, those tech-
niques cannot reduce the global drift if there is no loop clo-
sure. To get an accurate absolute pose in the environment,
we need a localization algorithm to locate the robot in a
given 3D environment. In this paper, we propose a particle-
filter-based localization algorithm to robustly localize our
MAV in a given 3D octomap (Hornung et al., 2013; Maier
et al., 2012). Although particle filter localization has been
used successfully on ground mobile robots, the 6DoF pose
(x,vy,z, 90,0, ¥), which needs to be estimated for MAVs, in-
creases the complexity of the problem. Here, we show that
by designing an efficient observation model, this method
can work very well on an embedded computer. For a gen-
eral idea of a particle filter, readers are referred to Thrun,
Fox, & Burgard (2000) for a detailed description.

4.3.1. Motion Model

For each subsequent frame, we propagate the previous state
estimate according to the motion model p(S;|S,_1, u,) using
the odometry AT, computed by the fast range flow odome-
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try proposed in Section 4.1. For each dimension, the propa-
gation equations are of the form

S =8_1+AT +e, e ~N(0,0?), )

where the final term in each equation adds a small amount
of normally distributed noise so as to support unexpected
motion.

4.3.2. Observation Model

In this section, we describe how to evaluate roll-6,, pitch-¢,,
height-z,, and x, y, yaw-1, in detail. The reason we estimate
the 6DoF state, instead of just x, y, z, ¥ while getting the roll
and pitch from the IMU, is that our MAV works in a ship-
board indoor environment that is not always level. There-
fore, the roll and pitch angle from the IMU is not the true
pose of the MAV inside the ship. In our system, one observa-
tion O, is one frame of point cloud generated from the depth
image. The belief of the MAV’s 6DoF state is updated by us-
ing two different pieces of sensor information contained in
one observation O,. First, the belief is updated based on the
ground plane information detected from the point cloud.
Since our MAV works in indoor environments, most of the
time it can see the ground plane. The ground plane is de-
tected to get the roll 4, pitch ¢, and height 7, measurements
to evaluate each particle’s weight. Second, the belief is again
updated based on the range measurements d, contained in
the same point cloud. Since the ground plane has no contri-
bution for determining the x, y, and yaw, the ground plane
is filtered out when updating the particle’s position weight
using range measurements. The final observation model is

p(O/|S)) = pld;, %, b étISt)
= p(d:|S;) - p(Z:1S;) - P(d;t|Sz) : p(§r|Sr)~ (10)

The formulation of the likelihood function p(x|S,) is defined
by the Gaussian distribution:

1 e?
ple,0) = N exp (‘2(;2> . (11)

where o is the standard deviation of the sensor noise and e,
is the error between predicted and measured values.

First, we detect the ground plane and use the ground
plane information to update the belief of the state. To im-
prove computation speed, the original input point cloud is
uniformly downsampled to get the sparse point cloud C,.
Then, point cloud C, is segmented into ground point cloud
C; and nonground point clouds C” by using a RANSAC-
based method (Fischler & Bolles, 1981). We assume that the
ground plane is the biggest and furthest plane to the MAV
and the closest to horizontal. After detecting the ground
plane, roll, pitch, and height values can be easily com-
puted from the ground plane equation. Then, the weight of
each particle is updated according to the observed measure-
ments and predicted measurements by using the following
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equations:

p(ft|St) = :O(Zr — 2 O-Z)a
P(QEAS/) = p(¢ — é’l? U(p), (12)
P(§t|st) = ,0(9, - ér»Ue),

where 7;, ¢,, and §, are calculated from the detected ground
plane, and o, 04, and o, are determined by the noise char-
acteristics of the ground plane.

Second, in order to evaluate the depth-sensing likeli-
hood p(d;|S;), we use a sparse subset of beams from the
point cloud C,. From our experiment, we found that how
one selected the subset of beams really influences the ro-
bustness, efficiency, and accuracy of the localization algo-
rithm. To efficiently use the points with the most constraints,
we tried two ways to select points. First, since the ground
point cloud C; has little importance for determining the x,
y, and yaw of the MAV, only very few points C;' from the
ground part are selected by using the uniform downsam-
pling. For the nonground part point cloud C”, we found
that most of the time in indoor environments, especially
in long corridors, there are only a few points on the wall
and the ceiling that are useful for determining the forward
translation. If we use a uniform downsampling, then we
will miss this valuable information. To use this information,
we try to select those points C; by using a normal space
sampling method (Rusinkiewicz & Levoy, 2001). By doing
so, we can select those points with the most constraints.
Finally, we form points C/' selected from the ground part
and points C from the nonground part to get the final fil-
tered point cloud C/. An illustrative picture is shown in
Figure 3.

We assume that the sampled measurements are condi-
tionally independent. Here, the likelihood of a single depth
measurement d,;, depends on the distance d of the cor-
responding beam end point to the closest obstacle in the
map:

1 d?
p(dixlS) = pd, o) = ﬁ exp <—ﬁ> , (13)

where o is the standard deviation of the sensor noise and d
is the distance. Since a point cloud measurement consists of
K beams d, ;, the integration of a full scan is computed as
the product of the each beam likelihood:

p(d1S) =[] p(dlS). (14)
k=1

In practice, the depth values of the RGB-D camera are very
noisy when the measurement range is bigger than 4 m.
To include this characteristic in our observation model, we
use a changing o, which increases with the measurement
distance.

4.4, State Estimation on the Flight Controller Unit

For onboard planning and control, correct and robust es-
timate of the position and orientation of the platform is
required. We fuse measurements from all the sources on
the FCU itself to output a high-frequency state estimate. We
run a very high rate attitude EKF estimator, which stabilizes
the platform’s angular motion. The heading is generally cor-
rected using a magnetometer, but it would fail inside a ship,
which is a metal body, hence we use gyroscopes to estimate
the heading rate and correct the absolute heading using the
output of the localization module running on an onboard
embedded computer.

To achieve this, we have developed a robust state esti-
mation algorithm on FCU. We used Pixhawk’s original EKF
for attitude estimation with modifications to use emulated
magnetometer readings generated using heading estimates
from the localization module. For position and velocity esti-
mation, we changed from the original pixhawk’s inav filter
to a Kalman filter (KF). The algorithm leverages on real-time
performance of a loosely coupled KF. By “loosely coupled,”
we mean that the attitude estimation is done by the EKF run-
ning on FCU, which is fed to the Kalman filter to estimate the
final odometry explained in the following paragraph. Fus-
ing data from various sensors allows us to keep track of our
position even when one sensor fails but another has some
qualitative estimate. All the inputs of the Kalman filter are
shown in Figure 2(b). This estimate is used to update the po-
sition of the platform in a coordinate system independent of
the global coordinate system. The FCU converges with the
absolute pose estimate in a global frame as it arrives from
the localization module running on the onboard embedded
computer. In this way, there are no abrupt changes in the
pose estimated on pixhawk required for a robust position
control.

We use the KF only for position, velocity, and accel-
eration estimation because we can get the roll, pitch, and
yaw estimates from the EKF attitude estimator and then
transform all the input data of the KF to the global frame.
Therefore, all the information is in one single frame, and
because there are no angular corrections required, the filter
becomes a linear problem that can easily be solved using
a Kalman filter (Thrun, Burgard, & Fox, 2005). To estimate
the final position, velocity, and acceleration for control, we
fuse velocities from a downward-facing PX4Flow camera
and visual-inertial odometry from the UKF running on the
onboard embedded computer. The reason we used a UKF
for velocity estimation on the Odroid embedded computer
is that the KF running on the FCU needs fast and real-time
measurements, and default VO output is slow. Our KF did
not have a measurement buffer to sync the times of all the
measurements. Measurements were fused as they arrived.
Therefore, we used a UKF on the onboard computer to send
out faster VO estimates using an accurate MicroStrain IMU,
which solved the problem of erroneous fusion of delayed

Journal of Field Robotics DOI 10.1002/rob
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Figure 3. Filtered point cloud C/ for the depth-sensing likelihood updating. The robot’s pose is denoted by the particle set.
The filtered point cloud is composed of two parts. The first part points are selected from the ground plane using the uniform
downsampling method. The second part points are those with the most constraints selected from the nonground part by using
normal space sampling. Green points are the original downsampled point cloud C;, and brown points are the final filtered points
¢/ with the most constraint information. As one can see from the picture, many points of door frames and protruding objects in
the corridor are selected, while very few points from the ground are selected.

measurements. This KF also fuses absolute positions from
the localization module with height measurements from
the point LIDAR and the PX4flow sonar sensor. We chose
to use LIDAR and sonar sensors because it is difficult to use
a sonar sensor alone for height estimation. This difficulty
stems from the fact that in constrained spaces, the sonar
sensor would sporadically give erroneous measurements
due to bounces from close walls or clutter along the corri-
dors, leading to erroneous height estimates. To solve this
problem, we added the point LIDAR sensor. The LIDAR
has a measurement range from 0.1 to 40 m. However, the
LIDAR sensor has worse resolution (1 cm) compared to the
sonar sensor (1 mm). Hence we used both.

5. REAL-TIME MOTION-PLANNING ALGORITHMS

A motion-planning module needs to efficiently detect and
avoid obstacles to maintain the safety of the vehicle. Even
when the prior map for localization is accessible, it is only
used in global path planning to generate some mission
points for navigation in order to adapt to the unknown ob-
stacles and environmental changes, and these points could
also be provided by a human (Shen, Michael, & Kumar,
2013). Therefore, an online obstacle mapping and avoidance
algorithm is designed to generate a local collision-free tra-
jectory based on the mission points and the real-time sensor
data independent of the prior map.

5.1.

The global planner is called upon at the beginning or when
the local planner gets trapped in local dead ends. It is
composed of the following three steps:

Global Path Planning
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(i) Generate a 2D grid map from a 3D point cloud. Since
our MAV operates mainly in corridor environments, a
2D map is enough to provide high-level mission points
with much faster processing speed. We manually remove
the ceiling and ground using a height threshold, and we
project all the 3D points onto the 2D grid map.

(if) Build a Voronoi diagram of the grid map using the incre-
mental brushfire algorithms (Kalra, Ferguson, & Stentz,
2009). This reduces the latter A* to search only on the
Voronoi graph instead of the entire workspace.

(iii) Search the optimal path using A* on the 2D position

x, y state space. Smoothing and collision checking are
implemented later to get a feasible and smooth path, as
shown in Figure 4(a). Finally, the path is downsampled
to generate a series of mission points about 5 m away
from each other.

5.2.

An online updated 3D occupancy map (Scherer et al., 2012)
is built to represent the local world for obstacle avoidance.
It stores the probability of each grid being occupied and is
updated according to the range sensor data from the RGB-
D camera. If the probability exceeds a threshold, the grid
would be considered as obstacles. Denote b(m) as the be-
lief of a grid m. Then the belief update under the sensor
observation o is by

Obstacle Mapping

b(m|o) = b(m) + k = 20, (15)
b(m|o) = b(m) — k * 5.

The first equation indicates that if the sensor ray hits
the cell, it increases the probability of being obstacles, and
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vice versa for the second equation. A detailed derivation of
the update rule can be found in Scherer et al. (2008).

A scaling number k € [0, 1] is used to represent the
quality of observation o, aiming to increase the accuracy of
the occupancy estimate and reduce the unnecessary updates
due to localization uncertainty. It is based on the following
two components: (i) The uncertainty of state estimation. If
the state estimation is of high quality with low uncertainty,
k is set close to 1. The uncertainty is measured by the de-
terminant |Q| of the pose covariance matrix Q, which is
computed from the particle distribution in the localization.
We linearly rescale | Q| to k; € [0, 1]. (ii) The distance d of the
grid to the vehicle. If d increases, sensor data are likely to
be inaccurate. We linearly rescale d to k, € [0, 1]. This is rea-
sonable for an Asus RGB-D camera since its reliable range
measurement is about 3.5 m. Finally, k is set as k = kik».
To keep memory and computation efficient, the occupancy
map keeps a fixed dimension and moves along with the ve-
hicle. The obstacle grid in the occupancy map is then used
to compute a 3D distance map, which stores the distance of
each grid to its closest obstacles, as shown in Figure 4(b).

5.3. Local Motion Planning

Given the 3D obstacle distance map and the mission point
from the global planner, the local planner will generate an
optimal dynamic feasible and safe trajectory in real time.
The objectives include obstacle clearance, control input en-
ergy, execution time, and so on. As outlined in Section 2,
searching algorithms such as RRT* or A* suffer from the
curse of dimensionality, and they may take several min-
utes to converge (Bry et al.,, 2015). Utilizing the differen-
tial flatness property of the quadrotor (Mellinger & Kumar,
2011), the planning problem can be changed to optimize the
polynomial splines of the flat output variable, in our case
X, y,z, y(yaw). However, it is still intractable to directly op-
timize the high-dimensional polynomial coefficients subject
to dynamic constraints using nonlinear optimization. There-
fore, the problem is simplified into two steps: optimal path
planning without considering dynamic constraints, and op-
timal dynamic trajectory generation through waypoints.
This technique is widely used for computational efficiency
[see Boeuf, Cortés, Alami, & Siméon (2014) and Richter, Bry,
& Roy (2013)]. The closest work to ours is that of Richter
et al. (2013) and Bry et al. (2015), which combines RRT*
with polynomial trajectory generation and is also applied
to a real MAV flight. The difference is that we use CHOMP
(Ratliff et al., 2009) optimization instead of RRT*, and we
utilize different polynomial trajectory generation methods.
In addition, their trajectories are computed offline while our
method can run at 30 Hz online, as shown in Section 7.3. The
following two sections describe path planning and trajectory
generation, respectively.

5.3.1.

Compared to the search algorithms such as RRT* and A*, an
optimization-based planner such as CHOMP usually gen-
erates smoother paths because it explicitly optimizes the
smoothness term. However, CHOMP may get stuck in the
local minima due to a bad initial guess. To efficiently gen-
erate a good initial guess, we use receding horizon control
(RHC) to select the best path from an offline path library
as the initial guess (Dey et al., 2015; Green & Kelly, 2007).
We further modify the standard CHOMP to an end-point-
free optimization because the end point of the initial path
selected from the library may be close to obstacles and not
optimal.

The path is composed of a series of waypoints. Each
waypoint has 4DoF {x, y, z, ¥ (yaw)}, namely the flat output
space of the quadrotor (Mellinger & Kumar, 2011). Let the
path be & : [0, 1] = R* mapping from time to 4DoF such
that

Path Planning

].'l'léil’l J(%‘) = wlfobst(%_) + w2fsmooth($) + fgoal(%_) (16)

s.t. £(0) = &,

where w;, w, are the weighting parameters. So the initial
state is fixed while the ending state is freed.

fobst(§) is the obstacle cost function as defined in
CHOMP:

! d
f()bs'f(s) = '/0. Cobs[s(t)] H Eé(t) dt? (17)

where cops[£(1)] = [|max (0, dmax — d[E()])|I*. dmax is the
maximum distance upon which obstacle cost is available,
and d[&(r)] is the distance to obstacles from the distance
map.

Semootn(§) measures the smoothness of the path and pe-
nalizes the high derivatives:

1 7' d 2
Fonoon ) = 3 fo e ar. (18)

feoal(€) is the cost-to-go heuristic measuring path end-
point distance to the local goal point &,:

fgoat(€) = 115(1) — &I1*. (19)

The path & is discretized into 16 waypoints that are op-
timized together using CHOMP based on the cost function
in Eq. (16).

The initial path library S of RHC contains 27 specially
designed paths, as shown in Figure 5, including three cat-
egories: straight flight, turning, and route shifting. We did
not utilize the maximum dispersion library of Green et al.
(Green & Kelly, 2007) as they assume an environment with
random obstacle configurations. Dey et al. (2015) utilized

Journal of Field Robotics DOI 10.1002/rob



Fang et al.: Robust Autonomous Flight in Constrained and Visually Degraded Shipboard Environments o 11

E
|

(a)
Figure 4.
The purple circle represents the quadrotor.

Figure 5. Initial path library. All the paths start at (0,0). The
library is manually designed for the corridor environment
where obstacles usually lie on two sides. It includes a straight
line, turning arcs with different curvatures, and route-shifting
curves with a parallel ending direction, corresponding to the
three main flight modes in the corridor.

this library for a densely cluttered forest flight. For our cor-
ridor flight, however, obstacles usually lie on two sides, so
only small amounts of initial paths are needed. The initial
paths are around 2 m long within a short horizon, making
the latter optimization faster and more reactive.

We first align the offline path library with the looka-
head planning pose, and then we select the best path
& = argming.s J(£) as an initial guess and optimize it us-
ing the above-defined cost functions. Although the initial
path is in 2D x, y space, the optimization is performed in
4D x, y, z, ¥ (yaw). For z, we add an additional cost of being
close to the reference height, because maintaining height
stability is beneficial for state estimation, such as for the

Journal of Field Robotics DOI 10.1002/rob

(b)

(a) Global path planning using A* search. (b) Distance map. The redder pixels are closer to obstacles with higher costs.

optical flow sensor. Since fopst and fzoa1 Only depend on the
position x, y, z while independent of ¥ (yaw), we directly
set the ending state’s yaw as the initial path’s final tangent
direction and optimize the other states” yaw using fomootn-
An optimization example during turning is shown in Fig-
ure 6(a), where the gradient pushes the path including the
ending state away from obstacles. The average cost per it-
eration of J in Eq. (16) during turning is shown in Figure
6(b), demonstrating the convergence of optimization.

5.3.2. Trajectory generation

After getting the path waypoints &,...,&, of {x, y, z,
¥ (yaw)}, we need to generate a continuous trajectory with
time profile through them so that we can use the veloc-
ity, acceleration, and higher-order derivatives to compute
feedforward control input for the quadrotor (Mellinger &
Kumar, 2011), which guarantees the exponential tracking
stability of the controller. The polynomial spline is chosen
as the basis function due to its analytic and computational
tractability.

As suggested by Mellinger & Kumar (2011), snap, a
fourth-order derivative (with respect to time), is related
to the changes in the motor commands, which should be
continuous and minimized for quadrotors. In our case, the
waypoints from path planning are downsampled into five
segments so the trajectory &(¢) is parametrized as five seg-
ments of sixth-order polynomials to ensure continuity of
up to fourth derivative through the whole trajectory. In the-
ory, higher-order polynomials could increase the degrees
of freedom so as to get better optimization, but they may
also increase computation complexity and are more likely
to become ill-conditioned (Bry et al., 2015). The kth segment
1 < k < 5 of the trajectory is expressed as

6
EN =) put', na<t<t. (20)
i=0
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(a) Path optimization in turning. The color grid represents the distance map. The green curve represents the initial best

path, while blue curves are the paths during optimization based on the gradient (yellow). The final optimized path is in red. (b)

Cost iterations of path planning in a turning scenario.

(i) Minimize snap: The integration of snap to be mini-
mized is defined as

Forap () = f '

There are two kinds of constraints for optimization. (i)
The equality constraint imposed on the begin and end points
of each segment, including passing through each waypoint
and keeping derivatives continuous. (ii) The inequality con-
straint, including within the maximum velocity and the ac-
celeration limits.

For each flat output variable, for example the x co-
ordinate, it has five segments’ trajectories and a total of
35 polynomial coefficients. We can stack the 35 coefficients
as p € R¥® and rewrite the snap cost function and equality
constraint in a matrix format. Then we obtain the quadratic
programming problem:

2

d*&(r)
drt

@1

min p"Hp st Ap=b, Cp<d, (22)
P

where H is the integration of the snap square. Therefore,

H is a positive-semidefinite matrix. To obtain an analytical

solution, we just consider equality constraints and assume

that the time allocation of each segment is set based on a

constant velocity model. A closed-form solution is found

using Lagrange multipliers:
p=H'AT(AHAT) b, (23)

Since the H matrix is sometimes ill-conditioned for inver-
sion in practice, a regularization term ¢/ is added to it to
deal with the singularity problem:

H <« H+¢l, (24)

where [ is an identity matrix and ¢ is a small positive num-
ber. Here, it is set to 0.001. This Tikhonov regularization
(Golub, Hansen, & O’Leary, 1999) provides an approxima-
tion to matrix inversion.

To deal with the inequality constraint, instead of the
time-consuming nonlinear optimization through iterations,
we check the inequality constraint after getting the polyno-
mials from Eq. (23). If it is not satisfied, time duration is
enlarged for the whole trajectory, and then Eq. (23) is solved
again until the inequality constraint is satisfied. In practice,
since our vehicle flies at low speed, the iteration process is
usually not needed. A better method is proposed to opti-
mize the time allocation, as follows.

(ii) Optimize time: Until this point, the time allocation
for each segment has been fixed based on the constant veloc-
ity model, but actually it can be optimized to get a smaller
snap while satisfying the inequality constraint. For example,
if two waypoints are far away, then the segment should be
allocated more time to avoid unnecessary acceleration and
deceleration. So in this section, we optimize the time al-
location t = [Aty, Aty, ..., Ats] to minimize w3 finap + fiime
in Eq. (25). There is no analytical solution to it, and the
Levenberg-Marquardt method (Moré, 1978) is adopted to
solve it through iterations,

5
F() = w3 fanap + fiime = w3p(t) H)p(t) + Y At;, (25)
i=1
where p(r) is computed analytically using Eq. (23). wj is the
relative weight of snap cost compared to time length cost.
We change the cost to F(t) = f(t)* and compute Jaco-
bian J numerically. Then the update of each iteration is

{(JTJ + Aldiag(J" N8 = JT [ £(1)]

t<—t+94. (26)

Journal of Field Robotics DOI 10.1002/rob
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An example of time optimization is shown in Figure
7(a). Each spline is the minimum snap trajectory with some
time allocations. After 10 iterations, the red trajectory be-
comes much smoother than the initial trajectory in blue.
Total cost f(t) iteration is shown in Figure 7(b).

For the inequality constraint Cp < d, we still need to
check it after getting the optimized polynomials and time
allocation from Eq. (25). If it is not satisfactory, we could
increase the weight ws for the snap cost, which tends to
enlarge the total time duration, and then optimize it again.

6. SMOKE AND FIRE DETECTION

The goal of this project was to detect and locate fire or smoke
and alert the emergency response team based on this infor-
mation. This involved detecting fire using onboard sensors
and then determining its location using the vehicle’s esti-
mated pose inside the ship. We used a lightweight FLIR-tau
thermal camera to measure the temperature of the environ-
ment. This provided us with a 640 x 480 pixel image with
a pixel intensity corresponding to the temperature at the
pixel location, as shown in Figure 8(a). We can segment the
appropriate range of temperature for fire, people, etc. based
on this image. Anything over 100°C is considered to have
a high probability of fire or being situated very close to
fire [e.g., Figure 8(b)]. Similarly, segmented blobs with tem-
perature close to 30 °C are considered to belong to human
beings. Smoke detection was based on texture analysis of
the color images received from the onboard RGB-D camera.
The current approach is to detect the color homogeneity in
the images. Therefore, the two deciding factors for smoke
detection are the contrast and the average intensity of the
image. Low contrast images represent a higher probability
of smoke in the environment. The average intensity, or for
this purpose the overall darkness of the image, provides
the counterargument. A lack of illumination makes smoke
detection imprecise due to the lower contrast in the image.
Taking both of the above factors into account gives us an
empirical idea of the smoke present in the environment.

Because this paper focuses mainly on autonomous nav-
igation problems, we only used the aforementioned meth-
ods to detect fire and smoke. Those methods may not be
very accurate and robust because only single pieces of infor-
mation from thermal or color images are used. We believe
that using all the information from thermal images, color
images, and depth images can improve the robustness and
accuracy of fire and smoke detection. In the future, we will
investigate new fire and smoke detection algorithms and
use the detected fire or smoke information to guide our
MAV to search shipboards more efficiently.

7. REAL-WORLD EXPERIMENTS AND ANALYSIS

In this section, we evaluate the performance of our naviga-
tion system through various experiments. We first test the
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performance of some important modules separately using
real-world datasets, and then we validate the performance
of the whole system in a real shipboard environment under
different environmental conditions. We develop our system
using ROS Indigo, PCL 1.7, OpenCV 2.4, and C++.

7.1. Fast Odometry Experiments

We compare our range flow odometry method with
other state-of-the-art methods using open-access bench-
mark datasets and author-collected datasets. Here, we com-
pared the proposed fast range flow odometry method with
Fovis? (Huang & Bachrach, 2011), DVO?® (Kerl et al., 2013),
and FastICP* (Pomerleau et al., 2013). We use the code that
the authors published for the ROS platform. We use default
parameters of each method for testing. We test the perfor-
mance of each method from three aspects, namely robust-
ness, runtime performance, and accuracy. As mentioned be-
fore, actually for our system we are not very concerned with
the accuracy of the odometry estimation method because
our localization algorithm will correct the drift of visual
odometry. Compared to accuracy, robustness and efficiency
in degraded visual environments are much more impor-
tant for us. Therefore, we will first show the robustness and
efficiency performance, and then the accuracy based on a
benchmark dataset.

7.1.1.

To evaluate the robustness, we recorded some datasets in
challenging environments that are similar to shipboard en-
vironments. Although it is easy to obtain ground truth in
outdoor (with a high-accuracy GPS) and small indoor envi-
ronments (with a motion capture system, such as Vicon), itis
very difficult to obtain accurate 6DOF ground truth in large
indoor environments with many corridors. For this reason,
the camera was started and stopped at the same position.
Therefore, we can use closed-loop error to evaluate the es-
timation performance of each method to some extent. We
define closed-loop error as the gap between the two ends
of a trajectory output compared to the total length of the
trajectory. We calculate the ratio of pixels in the image that
contains a valid depth compared to the total number of pix-
els in the image to estimate the quality of the point cloud.
We compute the average and standard deviation of the in-
tensity values (0-255) of the RGB image as a measurement
of the amount of light available in the image, which is a sim-
ple way to estimate the quality of an image. The data were
recorded at 15 Hz, and sensor resolution was 640 x 480.
The experimental results of two different environments are
shown in Figure 9 and Table I.

Robustness Validation in Challenging Environments

2https: //github.com/srv /fovis.git
Shttps:/ / github.com/tum-vision/dvo_slam.git
4https:/ / github.com/ethz-asl/ethzasl_icp_mapping.git
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and wood fire). The detected fire sources are outlined in green.

Table l. Closed-loop error.

Method Dark room Long corridor
Fovis failed 7.4%
DVO 17.09% 2.0%
FastICP 7.03% 6.9%

Our 4.59% 2.50%

The first experiment was in a conference room con-
taining a large desk and many chairs. In this experiment,
dramatic illumination changes occurred when the robot
entered and exited the conference room. The mean inten-
sity changed from 169.2 to 3.5. The conference room was

>138°C

Hi-Temp.Est.: “above 200:C

13'C

90C

§7°c

<45°C

(b)

(a) A colorized image output from FLIR thermal camera (wood fire). (b) Fire segmentation based on temperature (oil

very dark where the intensity was just about 3.5, which is
very challenging for visual-based methods. Fortunately, we
could still get good point clouds in this environment, where
the depth coverage ratio changed from 71.5% to 90.1%.
There is no doubt that depth-based methods would be bet-
ter than visual-based methods in this environment. In this
experiment, we found that our method achieved the best
performance. To our surprise, dense visual odometry could
still work almost all the time except in very dark areas (the
mean intensity is less than 10). It seems that DVO is much
more robust than sparse feature-based methods in this test.
However, even though depth-based methods achieved bet-
ter results in this test, they both encountered a degeneration
problem. As you can see around position A in Figure 9(a),
both FastICP and our method slide far away from the true

Journal of Field Robotics DOI 10.1002/rob
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Figure 9. Robustness evaluation in different environments. (a) Estimated trajectory in a low illumination conference room envi-
ronment. (b) Estimated trajectory in a challenging long corridor of a shipboard environment.

Table ll. Runtime performance.

VGA on Laptop QVGA on Odroid
Methods Mean Min Max StdDev Avg CPU Mean Min Max StdDev Avg CPU
Fovis 20.3 10.8 479 4.5 13.5% 25.30 82 113.9 11.7 23.5%
DVO 52.4 20.1 242.8 11.2 22.6%
FastICP 50.3 13.3 350.0 34.0 26.1% 77.03 15.7 262.4 34.5 45.6%
Our 10.9 3.5 35.6 3.5 12.5% 15.9 5.9 36.5 3.9 13.8%

position. This is a common issue for all geometry-based VO
methods, like the ill-conditioned problem for visual-based
methods in featureless environments. This can be associated
with a phenomenon known as “sliding,” where the algo-
rithm cannot determine where the best fit lies along a plane
or line. Usually, other sensor information such as RGB can
be incorporated to deal with the ill-conditioned problem.
Unfortunately, our practical application environment is a
visually degraded environment where RGB information is

Journal of Field Robotics DOI 10.1002/rob

not available. Therefore, in our algorithm we do not use any
RGB information. In our practical system, IMU information
is used to ameliorate this problem.

The second experiment was in long corridors inside of
a shipboard environment. In this experiment, the mean in-
tensity of images changed from 164.5 to 59.4 and the depth
coverage ratio changed from 90.9% to 79.3%. It seems that
both RGB and depth information are very good. However,
in this long corridor, the floors and walls are very smooth.
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There are many places where only small objects on the wall
or door frames can be used to estimate the translation.
Therefore, this environment is very challenging for both
visual and depth-based methods because there are only a
few visual and geometric features. It can be seen that in
this environment, DVO achieved the best result while Fovis
failed (around place A) before the robot entered the last cor-
ridor section. It should be noted that Fovis does not output
any estimation when the algorithm finds that there are not
enough feature correspondences. The FastICP method also
has a similar failure-detection technique. When the over-
lapping of two consecutive point clouds is too small, or not
enough point correspondences are available, FastICP will
not output any results. Fovis’s failure is due to many repeti-
tive textures around the corner A of the last corridor section,
as shown in the top right picture in Figure 9, where Fovis
failed to detect and track features when the camera turned
quickly around that corner. The reason that DVO can suc-
ceed is that it depends on all of the image information other
than sparse visual features, which are difficult to detect in
this environment. Sometimes, even though some sparse vi-
sual features can be detected, they may be discarded due to
the lack of corresponding depth value. The FastICP method
also failed to estimate the translation in the last corridor
section (around position B). The reason for this failure is
that there are not enough constraints in the last corridor
for the ICP method to estimate the translation. Our method
achieved very good results, which were similar to those of
DVO in this test. The reason that our method can achieve
as good an estimation as DVO is that actually they are both
direct motion estimation methods using whole image infor-
mation.

7.1.2. Runtime Performance on an Embedded Computer

The computational performance is very important in our
system, since our onboard computer has limited computa-
tional resources while all navigation modules should run
onboard in real time. If the odometry is too slow or takes
too much CPU time, then it is impossible to run other
modules online, such as localization, mapping, and path
planning. Our odometry algorithm is a single-threaded pro-
gram. Therefore, it only takes one core. In our experiments,
we tested the runtime performance on two computers by
using two datasets. One dataset was recorded at a frame
rate of 15 Hz with VGA resolution and tested on an Asus
UX31E Ultrabook, which has an Intel 64-bit Quad-core 1.7
GHz CPU and 4 GB Memory. Another dataset was recorded
at a frame rate of 15 Hz with QVGA resolution and tested
on our onboard embedded computer Odroid XU3. This em-
bedded computer is very compact and is based on a 32-bit
ARM architecture. It has two processors: a Cortex—A7 quad
core CPU and a Cortex—A15 quad core CPU. Each core has
one thread. This embedded computer seems very powerful,
but since it is based on ARM architecture its computation

performance is far behind that of the x86 Intel CPU. For
those two datasets, the testing results are shown in Table IX.
It should be noted that since the DVO* uses many Intel SSE
instructions to optimize the code, we failed to compile it on
our ARM-based Odroid embedded computer. Therefore, we
make use of the implementation® included in OpenCV and
test it on the Odroid computer (the average processing time
is around 65 ms for QVGA). From the experimental results,
we can see that our method is the fastest and also consumes
the least amount of CPU resources. FastICP cannot work in
real time on the embedded computer. Although we failed to
run the original DVO* on Odroid, from the experimental re-
sults of each method compared on the laptop and Odroid,
we can deduce that DVO is also a bit difficult to run in
real time on the Odroid embedded computer. Although Fo-
vis also has very good speed and efficiency performance,
unfortunately it cannot work in dark or visually degraded
environments.

7.1.3.  Accuracy Comparison using Benchmark Dataset

In this section, we use TUM RGB-D datasets® to test the
estimation accuracy of each method because it can give
us a very accurate ground-truth trajectory. The data were
recorded at a full frame rate (30 Hz) and sensor resolution
(640 x 480). The ground-truth trajectory was obtained from
a high-accuracy motion capture system with eight high-
speed tracking cameras (100 Hz). We use the relative pose
error metric (Sturm et al., 2012) to measure the drift of the
visual odometry system.

We used two datasets to compare the accuracy of each
method. Actually, for the TUM datasets, it is not very suit-
able to compare our method to other methods because
our method is designed for dark or light smoky environ-
ments and a computation-limited embedded system, while
all the sequences provided by TUM datasets have very
good illumination. Here, two datasets, freiburg?2/desk and
freiburgl/room, were selected for the experiments. For the
freiburg?2/desk sequence, the RGB-D data were recorded in
a typical office scene with two desks, a computer monitor,
chairs, etc. The Kinect was moved around two tables so that
the loop was closed. The average translational and angu-
lar velocity were 0.193 m/s and 6.338 deg/s, respectively.
The mean intensity changed from 73.1 to 153.8. However,
the depth coverage changed from 85.3% to 53.9%. There-
fore, the RGB information is good while the depth infor-
mation is not very good. In the freiburgl/room dataset, the
sequence was filmed along a trajectory through a typical
office. It started with the four desks but continued around
the wall of the room until the loop was closed. The depth

Shttps:/ /github.com/Itseez/opencv/blob/2.4/modules/
contrib/src/rgbdodometry.cpp
6http: //vision.in.tum.de/data/datasets /rgbd-dataset
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Table lll. Translational and rotational errors of each method.
freiburg2/desk freiburgl/room
% (m) o 0 (deg) o x (m) o O(deg) o
Fovis 0.012 0.007 0.526 0.307 0.056 0.035 2.377 1.328
DVO 0.024 0.012 0.982 0.512 0.058 0.045 2.396 1.539
FastICP 0.022 0.022 0.942 0.618 0.066 0.103 3.012 2.704
Our 0.025 0.018 1.253 0.842 0.063 0.069 3.113 3.082

coverage changed from 83.8% to 54.9% and the mean in-
tensity changed from 169.5 to 77.8. In this dataset, there
are some fast rotations. The average translational velocity is
0.334 m/s and the average angular velocity is 29.882 deg/s,
which is much faster than the freiburg2/desk dataset. The
mean relative pose error of each method is shown in Ta-
ble ITI. From the experimental results, we can see that even
though our odometry is not as accurate as the Fovis method,
it can achieve similar accuracy to that of other state-of-the-
art visual odometry methods by using only a fraction of the
computational resources.

7.2. Real-time Localization Experiments

To realize localization in a given 3D map, the Lidar odom-
etry and mapping (LOAM) (Zhang & Singh, 2014) system
was used to create the offline 3D map. The LOAM sys-
tem can build a very accurate point cloud map by us-
ing a rotating 2D laser scanner. In all the experiments,
we set our map resolution to 4 cm. We tested the lo-
calization algorithms in different kinds of environments
by carrying or semiautonomously flying our customized
MAV.

7.2.1. Robustness in Challenging Environments

We tested our localization algorithm in two degraded visual
environments. In both experiments, the illumination was
very low. The difference is that one was a cluttered and
narrow environment, while the other was more structured
but almost completely dark.

The first experiment was in a narrow and cluttered
environment inside of a ship, which has a size of 16 m
x25.6 m x 4.04 m. In this environment, most of the time the
RGB images are very dark, as shown in Figure 10(a), while
depth images are still very good. However, there are some
places that are very challenging for depth-based odometry
estimation methods. For example, when the robot entered
the spacious room around position A or made a turn around
position B, as shown in Figure 10(a), the depth camera could
only see the ground plane and the side wall. In both sce-
narios, the odometry estimation became ill-conditioned be-
cause of the poor geometric structure, which made it very
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difficult to determine all 6DoF. It can be seen that the odom-
etry estimations around positions A and B are not very
accurate, inducing incorrect translations. Because this error
will be accumulated, the whole odometry trajectory in this
environment does not look very good. As mentioned in Sec-
tion 7.1.1, a robust solution that can solve this problem is to
incorporate RGB information. Unfortunately, our environ-
ment is a visually degraded environment where RGB infor-
mation is not available. That is one reason why we need a
prior map for navigation, because if we only use odometry,
this failure will lead to tragic results, and it is inevitable for
geometry-based methods. However, by using robust par-
ticle filtering, our localization algorithm can successfully
localize the robot in those challenging areas. Although the
localization accuracy is not very good around those places,
our algorithm can work robustly in those areas, which is
very important for control and motion planning. The local-
ization result in this environment is shown in Figure 10(a).
As one can see, our localization algorithm can successfully
survive those challenging areas and quickly track the true
position again.

The second experiment was in a structured but almost
completely dark environment with a size of 11.8 m x 19.2
m x 2.8 m. In this environment, we cannot get any useful
information from RGB images. There are also some chal-
lenging locations where the RGB-D camera can only see
the ground plane, one wall or two parallel walls, or even
detect nothing when it is very close to the wall, where the
depth image returns nothing because the minimum mea-
surement range of the RGB-D camera is around 0.5 m. In
those places [around positions A and B, as shown in Figure
10(b)], the depth-based odometry will also suffer from the
degeneration problem again. As can be seen from Figure
10(b), incorrect translations occurred in the odometry esti-
mation. In our experiments, we found that if the odometry
failure was relatively short in duration (less than 3 s), it was
possible for the localization algorithm to overcome this fail-
ure. The localization result of this experiment is shown in
Figure 10(b).

In both experiments, we just used the depth odome-
try as the motion model. Experimental results show that
even without very good odometry, our localization algo-
rithm can still work very well in different challenging
environments.
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Start/End

(a) (b)

Figure 10. Localization (blue) and odometry trajectory (red) projected onto the 3D Octomap in two visually degraded environ-
ments. [We first create the 3D point cloud map using a hand-held laser mapping device described in Zhang & Singh (2014), and
then we covert the point cloud map into the 3D Octomap.] The first row shows some images from the RGB-D camera. The second
row shows the localization results compared to only odometry estimation (x-y). The third row shows the depth images of some
challenging areas. From the depth images, you can see that only a few geometry features or constraints (pipes, etc.) are very
useful for pose estimation in those challenging areas because smooth ground and wall does not provide enough constraints for
determining all 6DoF. The last row figures show the side view of the localization and odometry trajectories. From the figures, one
can see the drift in the Z direction of the odometry estimation (red). In contrast, one can see that the localization result (blue) is
quite good. A video of those experiments can be found in https://www.youtube.com/watch?v=zYpjd55rID8.
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Table IV. Localization accuracy for datasets shown in Figure
11.

Environments  Distance RSME Mean Std
Office 472 m 0161m  0152m  0.056 m

Figure 11. Accuracy comparison with ground truth in an
office environment: Cyan: odometry. Red: localization. Blue:
ground truth.

7.2.2.

In this subsection, we compare the localization accuracy
with the ground truth from the LOAM mapping system.
We attached the sensors to the LOAM system and recorded
the datasets for offline comparison. Since the estimation ac-
curacy of the LOAM system is very high, we could consider
its trajectory as ground truth. We tested our localization al-
gorithm in an office environment similar to the ship, where
there were some chairs, tables, office furniture, and long
corridors. For the experiment, the map resolution was 4 cm
and the particle number was set to 500. The localization
algorithm updates the pose when the robot moves every
10 cm or turns 0.1 rad. The experimental results are shown
in Table IV and Figure 11. The accuracy of our localization
algorithm is better than that of others [Fallon et al. (2012)
and Biswas & Veloso (2012)]. In their work, their mean local-
ization error is about 40 cm, while ours is about 16 cm (note
that in our localization algorithm, the observation update
is executed only after the robot moves every 10 cm or turns
0.1 rad). It should be noted that the localization accuracy
changes in different environments or when the robot moves
at different speeds because those factors affect the accuracy
of odometry estimation dramatically.

Localization Accuracy
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Table V. Runtime performance on an embedded computer.
Algorithm Runtime

Name Mean Min Max StdDev

Odometry 18.3 ms 8 ms 25.8 ms 52ms

Localization 65.8ms  45.8 ms 97 ms 16.5 ms

Total CPU usage 34.5% 30.5% 44% 2.80%

7.2.3. Runtime Performance Evaluation

Runtime performance is very important for MAVs because
the onboard computational abilities are limited. In our ex-
periment, we tested the runtime performance of our system
on an Odroid XU3 embedded computer. Our odometry and
localization algorithms are both single-threaded programs.
Therefore, each algorithm takes one core. In our experiment,
the RGB-D data were recorded at a frame rate of 15 Hz with
QVGA resolution. For the experiment in Figure 10(a), the
runtime performance is shown in Table V. In our experi-
ment, we used 300 particles. When it is running at 15 Hz,
the CPU usage is very low, which leaves many computa-
tional resources for path planning and obstacle avoidance.

7.3. Local Motion-planning Experiments

The motion-planning algorithm is validated in a set of
experiments using real-world point cloud data of a ship
model. We simulated a depth camera using ray tracing,
built obstacle mapping online, and then generated trajecto-
ries accordingly. The lookahead planning pose is 0.5 s from
now on, about 0.25 m away. The local planner keeps replan-
ning from the lookahead state until the mission points are
reached.

7.3.1.

In this experiment, we compared our method with a com-
monly used RRT* planner (Karaman & Frazzoli, 2011). Our
path planning does not fix the end points for optimization,
but RRT* requires a fixed goal point. Therefore, to bias RRT*
by decreasing the search space, the local mission points were
set 2 m from each other, which is shorter than the original
5 m. The RRT* cost function is set as the path length and
obstacle cost. All the algorithms are implemented on the
embedded computer, and the planning example in one sce-
nario is shown in Figure 12. A detailed comparison of the
whole run is shown in Table VI. The snap cost comes from
the same polynomial trajectory generation module. RRT*
requires more time than our method to generate a valid
path, and it has lower quality in terms of obstacle clearance
and snap cost. This is mostly due to the fact that the corridor
is a structured environment where obstacles usually lie on
two sides. Therefore, our path library can quickly generate

Path-planning Experiments
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Figure 12.

(b)

(@) Our path library planning example. The gray cubes represent the occupancy grid. Colorful square represents the

distance map. Yellow curves are the offline path library, and the best one is shown in red. (b) RRT* planning. Yellow segments show

the RRT tree. The best searched path is shown in red.

Table VI. Path-planning comparison with RRT*. “Dist” is the vehicle distance to the obstacle.
Methods Time (ms) Mean dist (m) Min dist Mean snap (m/s?) Max snap
RRT* 70 0.46 0.16 1.46 14.02
Our method 30 0.47 0.18 0.58 2.50
a smooth and safe path, while RRT* needs many random  Table VIl. Trajectory generation comparison.
samples (see Figure 12).

The mean obstacle clearance is 0.47 m, nearly half the Method Time (ms) Snap (m/s?)
corridor width (1 m). The closest distance is 0.18 m at the :
door. From the point cloud, the door is about 0.44 m wide =~ Unconstrained 26 27.26
so the vehicle is nearly in the center of the door. Matlab quadprog.m 16.4 14.62

Our method 0.5 16.38

7.3.2. Trajectory Generation Experiments

We designed some simulation scenarios to evaluate and
compare the performance of minimum snap trajectory gen-
eration. Our method solves the ill-conditioned problem of
quadratic programming by Tikhonov regularization, while
Bry et al. (Richter et al., 2013) propose an unconstrained op-
timization method using the substitution technique. Their
method first finds the optimal waypoint derivatives, and
then computes the polynomial coefficients. Due to the spe-
cial formulation, it requires at least a ninth-order polyno-
mial in each segment, while we only require fifth-order.
We solve a batch of 10 randomized polynomial op-
timization examples. Six waypoints are chosen randomly
between [0,2], and time allocation is predefined. Our
method uses sixth-order polynomials, while the uncon-
strained method uses ninth-order polynomials. The com-
parison is implemented in Matlab on a desktop CPU

(Intel i7, 4.0 GHz), and the result is shown in Table VIIL
Our method achieves nearly the same snap cost as the Mat-
lab QP (quadratic programming) solver. If we do not use a
regularization term, it always returns a failure because the
matrix is nearly singular for inversion. The unconstrained
method uses more computation time, but the quality of the
trajectory is lower compared to ours. The possible reason
is that it uses higher order (ninth) and still includes some
matrix inversion, which might be unstable. But our method
is only effective for small segments’ trajectory generation;
for more segments with a large horizon, regularization may
not solve the ill-conditioned problem.

Through the continuous lookahead replanning mecha-
nism, the vehicle is able to reach the goal. The vehicle pose
history during simulation is shown in Figure 13. From the
image, the vehicle lies nearly in the middle of a corridor.

Journal of Field Robotics DOI 10.1002/rob
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Figure 13. Vehicle history poses using a replanning mechanism in a simulated shipboard environment. The vehicle starts from

bottom left to right.

Table VIll. Motion planning runtime performance on an em-
bedded computer.

Name Mean Min Max Std
CPU usage 10.96% 7.25% 15.62% 1.68%
Planning time 29.2 ms 15.2ms 37.8 ms 6.7 ms

7.3.3. Runtime Performance Evaluation

Runtime performance of motion planning was evaluated on
the Odroid XU3 embedded computer, shown in Table VIIL
We can see that obstacle mapping and local motion planning
take only 10% of CPU resources. The proposed algorithm
could run at 30 Hz, but we find that a 2 Hz trajectory update
is sufficient for corridor flight.

7.4. Field Demonstration Experiments
7.4.1.

For the demonstration, the mission of the MAYV is to search
in a partially known shipboard environment, locate the ar-
eas with fire, and create the temperature map of the whole
environment. To accomplish this goal, our robot uses an
onboard RGB-D camera (only depth images are used) for
autonomous navigation, and a FLIR infrared camera to
detect the environment temperature and mark the high-
temperature areas. We first used a hand-held mapping de-
vice (Zhang & Singh, 2014) to create the global map of the
whole demo area. This global map was used for both local-
ization and global planning. The resolution was set to 4 cm.
Figure 14 shows the created point cloud map. Our goal is to
launch the MAV around a “start point,” then let the robot
autonomously explore the 1-m-wide and 20-m-long corri-
dor, go through the narrow doorway, and go to the “end
point.” At the same time, the robot records infrared images
and detects the fire and high-temperature areas and puts
markers on the map for rescuers to see where the fire is.
We performed three kinds of experiments to test our
system. For each kind of experiment, we carried out at least
four successful experiments. We simulated the fire-fighting
scenario, where some places have good illumination while
some places are fully dark and others are filled with smoke

Mission Description
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and fire. Those environments pose different challenges for
our robot. We wanted to test the performance of our system
in those different kinds of practical environments.

7.4.2.

We performed a total of 20 experiments of autonomous
flights in this demo area under different environmental
conditions, including four experiments under normal con-
ditions, seven under completely dark conditions, and nine
under smoky conditions.

(i) Test 1: Normal Conditions. In this test series, all lights
in the hallway were on, which was a little bit better for the
optical flow estimation. However, in our localization sys-
tem we did not use any RGB information, therefore it did
not influence the localization performance too much. Ac-
tually, having all the lights on is not good for the depth
camera, because there are no depth values returned from
those bright lamps. The reason is that our depth camera
is based on structured lights. Figure 15 shows the experi-
mental results, and it can be seen that our robot can realize
reliable localization in this test. It should be noted that the
robot trajectory is not smooth, which does not mean bad
localization results. Actually, our robot was well-localized
in this test. One reason why the robot was not very stable is
that the hallway is very narrow, therefore the airflow really
influenced the control performance of the robot. We believe
that we still need to improve the robustness and accuracy
of our position controller in this environment.

(ii) Test 2: Dark Conditions. For this test series we turned
off all the lights in the test area, and we wanted to test
the ability of autonomous navigation in a totally dark envi-
ronment. The reason for doing this is that nowadays most
navigation systems of MAVs are using visual information,
which cannot work in a dark environment. In contrast, our
method uses depth information only, which works not only
in environments with abundant illumination but also in
environments where there are no visual features. In this en-
vironment, the downward-looking optical flow sensor was
influenced dramatically because the illumination was very
poor. However, in our experiments we found that our robot
was still well-localized and successfully went through the
very narrow doorway several times, as shown in Figure 16.

Experimental Results of Autonomous Flights



22 « Journal of Field Robotics—2016

Doorway

Figure 14. Global Point Cloud Map. From the start point, the vehicle flies autonomously in the corridor, goes through the narrow
doorway, and reaches the end point. At the same time, the vehicle needs to detect fire and high-temperature areas using infrared

cameras.

Figure 15. The first row shows odometry estimation (yellow) and localization (red) results in normal environment (with lights
on) during autonomous flights. The second row shows the RGB and corresponding depth images of the dark environment.

Experimental results showed that our system could work
very well in fully dark environments. We think our multi-
sensor fusion framework really improves the robustness of
the whole system.

(iii) Test 3: With Fire and Smoke. In this test series, we
simulated the fire-fighting scene inside the shipboard en-
vironment and carried out several experiments to test the
performance of our autonomous MAV. We carried out eight
experiments with a wood fire and an oil fire together with
light smoke, and one experiment with very dense smoke.
Figure 17 shows the results of one experiment from the light
smoke test series. We put some wood fire and oil fire in the
side room and at the end of the passageway, as shown in

Figure 17. The smoke in this test was not very dense, and
we found that even though the performance of the depth
camera was reduced dramatically (the quality of the depth
images became quite poor, as shown in Figure 17), our sys-
tem could still work. As can be seen from Figure 17, the
drift of the odometry is much bigger than that in previous
tests (especially the drift in the Z direction). However, the
localization system still worked well. Our MAV successfully
went through the narrow doorway five times in eight exper-
iments. Then we added some oil fire, which gave us much
denser smoke. In this experiment, we found that our system
could not work very well under those environmental condi-
tions (i.e., dense smoke generated by the wood fire and the

Journal of Field Robotics DOI 10.1002 /rob
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Figure 16. The first row shows odometry estimation (yellow) and localization (red) results in a dark environment during au-
tonomous flights. The second row shows the RGB and corresponding depth images of the dark environment.

Table IX. Success rate of experiments.

Environment Total run Succeed Rate
Normal 4 4 100%
Dark 7 5 71.4%
Smoky 9 5 55.5%

oil fire). When the smoke was very dense, the depth camera
returned almost no useful depth information, which made
the whole system fail. Our MAV could not successfully go
through the narrow doorway when the smoke was very
dense. Therefore, autonomous navigation in dense smoky
environments is still an open problem.

We also recorded the CPU usage during the field ex-
periments. In all the experiments, we used 300 particles for
particle filtering localization. When all modules were run-
ning, the total CPU usage was between 60% and 65%. The
experimental results showed that our navigation system
could run in real time by only using the onboard compu-
tation resources. Some snapshots of the flight are shown in
Figure 18. We performed a total of 20 experiments of au-
tonomous flights in this demo area under different environ-
mental conditions. The success rate of 20 runs is shown in
Table IX. Failure cases are usually due to quadrotors being
slightly rotated and stuck in the narrow doorway. It is dif-
ficult to cross the doorway in smoky environment because
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the depth image is corrupted by smoke, making it difficult
to perform state estimation, obstacle detection, and trajec-
tory tracking. Experimental results show that our robot can
work very well in all conditions except dense smoke. These
experiments also show that despite the difficulties associ-
ated with flying robustly in challenging shipboard environ-
ments, it is possible to use a MAV to fly autonomously into
a confined ship environment to rapidly gather situational
information to guide firefighting and rescue efforts.

In this field demonstration, fire/smoke detection was
not used as a guiding process. It was a completely open-
loop system that would output the locations of fire seen
by the camera without actively searching for it. The next
step is to combine fire detection with planning by try-
ing to get to areas with increasing temperature gradi-
ent. The video of a field experiment can be found at
https:/ /www.youtube.com/watch?v=g3dWQCECwIY.

8. LIMITATIONS AND LESSONS LEARNED

In this work, we have successfully developed a micro aerial
vehicle that can autonomously fly into a constrained and vi-
sually degraded shipboard environment even with moder-
ate smoke. However, our system also has some limitations.
In addition, during the development and field experiments,
we experienced numerous instructive failures. In this sec-
tion, we discuss the limitations and what we learned from
those lessons.


https://www.youtube.com/watch?v=g3dWQCECwlY

24 « Journal of Field Robotics—2016

{Jf"""““"&"’
e Y

RGB Image

Figure 17. The first row shows odometry estimation (yellow) and localization (red) results in a light smoke environment during
autonomous flights. The second row shows RGB and corresponding depth images from an onboard RGB-D camera. As can be sees,
the quality of the depth image became quite poor since many pixels do not have a depth value due to the smoke. The third row
shows the side view of odometry and localization. As can be seen, the odometry drifted dramatically in the Z direction.

8.1. Limitations

Currently, our system is still not an optimal design due to
some existing constraints. First, our vehicle is still a little
large for some narrow hatches in a real shipboard environ-
ment. However, given the current payload and flight dura-
tion requirements, we have the narrowest quadrotor design
we can imagine. We are working on moving from a quadro-
tor to a single/coaxial rotor design to decrease size but in-
crease flight time efficiency. Second, for the sensor systems,
we have not incorporated the thermal camera information
with other sensors to improve the pose estimation or con-
trol. The current FLIR thermal camera only provides image
frames at 9 Hz, which is difficult for real-time pose estima-
tion alone. In the future, we will choose a higher frame rate
thermal camera to fuse its information with other sensors in
order to get more robust pose estimation, especially in the
case of dense smoke. Furthermore, we will investigate new
fire and smoke detection algorithms and use the detected
fire or smoke information to guide our MAV to search the
shipboard more efficiently. Third, the controller needs to

take into account the aerodynamic disturbance force in the
narrow space due to the ground or wall effect, which could
pose a big difficulty for accurate trajectory tracking. An
adaptive controller or model predictive controller could be
utilized. Lastly, our visual odometry is fused with an IMU
via a loosely coupled strategy. This is easy to implement,
but the information is not fully used. In the future, we want
to try a tightly coupled visual-inertial SLAM idea to make
the estimation more accurate and robust.

8.2. Calibration Problems

In experiments, we found that our depth camera always un-
derestimated the actual distance. If we did not do the depth
calibration, then the close points from the point cloud were
correct but the far points were severely underestimated.
That means that far objects in the point cloud could not be
aligned to the global map correctly, which often caused the
whole localization system to fail.
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8.3. Delay Problems

Our visual odometry outputs the transform at 15 Hz, and
this estimation could be fed into FCU’s KF filter to fuse with
other data for pose control. We found that if we just use
visual odometry, it is not fast enough for KF filtering. The
latency sometimes made the filtering not smooth. Therefore,
we mounted a Micro-Strain IMU, then used UKF to fuse the
odometry and IMU information, and fed the fused result to
the FCU. By doing so, our system became much more stable
than before.

8.4. Hardware Problems

We encountered several hardware problems that caused our
system to fail. For example, the wifi communication be-
tween the ground station computer (for remote monitoring
and visualization) and the MAV was sometimes quite poor.
To alleviate this problem, we used the Ethernet port instead
of the onboard USB wifi and changed our communication
protocol from TCP to UDP. Another communication prob-
lem is between Pixhawk and Odroid, i.e., we found that the
USB communication was also not very stable. In addition,
the Sonar sensor readings provided by the PX4flow were
also not very stable. Therefore, in order to improve the ro-
bustness of the system, we mounted a point laser for robust
height estimation.

8.5. Computational Resources

All of the software components of our system currently run
on a single ARM-based embedded computer on the vehicle.
Although most of our algorithms can run at a higher rate,
we observed that if we increased the sampling rate of depth
images to 30 Hz, the whole system would consume almost
100% of the CPU resources. Therefore, we set the sampling
rate at 15 Hz, which can still give us good estimates but
with the CPU usage of the whole system around only 65%.
However, this limited the moving speed of our MAV, which
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Figure 18. Experiment demonstration. Left: turning. Right: crossing doorway.

only moves at a maximum speed of 1 m/s. If it moves too
fast, our navigation system will fail.

8.6. Dense Smoke Problems

Our MAV failed to go through the narrow doorway in
dense smoke environments because the smoke corrupted
the depth image dramatically. Therefore, autonomous navi-
gation in challenging visually degraded environment (such
as dense smoke environments) is still an open problem.
It is hard to get useful RGB or depth images in dark and
dense smoke environments even when we put some lights
on the MAV. However, we found that the thermal camera
could usually get very good images in dark and even heavy
smoke environments. We think that the thermal images are
very useful for autonomous navigation in such challenging
environments. In the future, we will use more thermal infor-
mation together with other sensor information to improve
the robustness of our pose estimation, fire, and smoke de-
tection algorithms, and we will also use that information
for autonomous searching and detection of people, fire, and
smoke in challenging environments.

9. CONCLUSION AND FUTURE WORK

In this paper, we have shown the feasibility of an au-
tonomous fire detection MAV system in a GPS-denied envi-
ronment with tough visibility conditions. This was achieved
without the need for any additional infrastructure on the
ship, reducing the installation and maintenance costs of the
system. We achieved an autonomous flight with fully online
and onboard control, planning, and state estimation in com-
plete darkness through 1-m-wide passages while crossing
doorways with only 8 cm clearance. We demonstrated 10
consecutive runs where the vehicle crossed a lit, completely
dark, and smoky passageway, respectively, and ended by
detecting wood and diesel fires.
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Future challenges will be to increase to robustness and
safety of the vehicle while increasing flight time. This will
involve improvements in both software and hardware. The
current vehicle size is a bit large, resulting in a very tight fit
through ship doorways. In the future, we intend to move
from a quadrotor design to a single/coaxial ducted rotor
design to decrease size but increase flight time efficiency.
Currently, our sensor suite loses reliability in dense smoke
conditions, leaving the robot inoperable. We plan on adding
sensors that extend the range of environments that our robot
can successfully navigate and inspect. On the software side,
one important goal is to decrease the dependency on a prior
map for state estimation to make the system more adapt-
able to changing or damaged environments. Pursuing ex-
ploration and mapping in a damaged environment poses
many interesting research challenges.
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