
Real-time 3D Scene Layout from a Single Image Using Convolutional
Neural Networks

Shichao Yang1, Daniel Maturana1 and Sebastian Scherer1

Abstract— We consider the problem of understanding the
3D layout of indoor corridor scenes from a single image in
real time. Identifying obstacles such as walls is essential for
robot navigation, but also challenging due to the diversity in
structure, appearance and illumination of real-world corridor
scenes. Many current single-image methods make Manhattan-
world assumptions, and break down in environments that do
not meet this mold. They also may require complicated hand-
designed features for image segmentation or clear boundaries
to form certain building models. In addition, most cannot run
in real time.

In this paper, we propose to combine machine learning with
geometric modelling to build a simplified 3D model from a
single image. We first employ a supervised Convolutional Neural
Network (CNN) to provide a dense, but coarse, geometric class
labelling of the scene. We then refine this labelling with a fully
connected Conditional Random Field (CRF). Finally, we fit line
segments along wall-ground boundaries and “pop up” a 3D
model using geometric constraints.

We assemble a dataset of 967 labelled corridor images. Our
experiments on this dataset and another publicly available
dataset show our method outperforms other single image scene
understanding methods in pixelwise accuracy while labelling
images at over 15Hz.

I. INTRODUCTION

In order to safely navigate inside corridors, robots need to
perceive the environment, detect wall obstacles and generate
actions in real time. Cameras are a popular sensor on robots,
as they provide rich information of the scene while having
a small footprint and low cost. Thus, we are interested in
using camera imagery to construct 3D representations for
autonomous navigation.

A common approach to this problem is to use geometric
3D reconstruction techniques, but these require association
across multiple images and often fail when there are few
visual or geometric features in the scene, which is common
in indoor scenes. Meanwhile, humans can effortlessly extract
considerable geometric information from single images. For
example, given the image in Figure 1 we can quickly
interpret it as a corridor intersection surrounded by walls,
and judge the approximate distance of these surfaces to the
camera.

We wish to provide the same kind of abilities to robots,
so they can easily find the free space and wall obstacles
given a single image. The reasoning should be robust to
various conditions such as poor lighting, homogeneous or
even occluded situations. This ability can greatly help robots
navigate in challenging featureless situations. It can also

1 The Robotics Institute, Carnegie Mellon Univer-
sity, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.
shichaoy@andrew.cmu.edu,dimatura,basti@cmu.edu

Fig. 1. Overview of our proposed method. We first segment the image
into ground (in green) and walls using CNN, then refine it by CRF. After
that, we detect the boundary, fit line segments and pop it up to 3D model.

extend the sensing horizon beyond stereo cameras and other
light-weight active sensors.

Our proposed approach is to combine machine learning
with inference of geometric properties to achieve efficient
scene understanding. It contains two parts: a learning al-
gorithm to detect ground and wall planes and geometric
modelling to build a simplified 3D plane model. For the
learning part, we use a type of Convolutional Neural Network
(CNN) and a Conditional Random Field (CRF) to predict a
geometric layout class for each pixel in the image. We then
use geometric constraints to compute the relative orientations
of the wall and ground to pop up ground and wall planes
into a simplified 3D model. In our evaluation, we show this
system to be faster, more accurate and robust than other state-
of-the-art systems for this task.

In summary, our main contribution is a method for scene
layout prediction combining learning-based semantic seg-
mentation with geometric modelling. It outperforms other
state-of-the-art methods in our evaluation, while classifying
frames at over 15Hz.

II. RELATED WORK

A. Multiple images

1) Sparse 3D Reconstruction: Structure from Motion and
Visual Simultaneous Localization and Mapping (vSLAM)
[1] have been widely used to obtain 3D reconstructions
from camera imagery. They track image features across

2016 IEEE International Conference on Robotics and Automation (ICRA)
Stockholm, Sweden, May 16-21, 2016

978-1-4673-8026-3/16/$31.00 ©2016 IEEE 2183

multiple frames and build a globally consistent 3D map using
optimization methods. These methods are mature but not
suitable for some corridor environment because of its sparse
visual and geometric features.

2) 3D Hypothesis Updating: Some works generate many
candidate 3D model hypotheses and subsequently update
their probability by feature tracking across multiple frames.
Tsai et at. [2] build corridor models by connecting three
edges with different orientations indicating left, center and
right wall. Furlan et al. [3] fit planes from vSLAM point
clouds and update the probability.

B. Single Image
1) Direct Depth Prediction: Many works predict pixel

depth directly from a single image using machine learning
method. Saxena et al.’s Make3D [4] system predicts image
depth using a Markov Random Field framework on super-
pixels. Karsch et al. [5] propose to predict depth for single
images by transferring depth from the closest matches in
a large database of RGBD imagery. Recent methods using
CNNs include Depth-Semantics-Normal (DSN) estimation
networks [6]. These methods don’t consider the scene layout
constraints, and thus might yield unreasonable 3D maps.

2) Room Layout Parameterization: Lee et al. [7] detect
line segments and extend them to generate fixed corridor
models. Hedau et al. [8] parameterize room layouts by sam-
pling rays from vanishing points and select the best candidate
model based on the surface labels or orientation maps using
structured prediction. These methods rely on the Manhattan
assumption and specific image viewpoints. Moreover, most
of these cannot achieve real-time performance, except for the
sped-up implementation in [9].

3) Combining Geometry and Learning: The most similar
work to ours is by Hoiem et al. [10]. They use region-
based cues such as color, texture and edges, together with a
superpixel segmentation, to classify the image into multiple
geometry classes and then fold them into a 3D model. It does
not assume a specific environment model and is applicable
to various situations. But it is not obvious how to design
effective image cues and it also cannot run in real-time.
Compared to their method, our CNN segmentation with
CRF refinement obtains significantly higher segmentation
accuracy and the pop-up process is faster and more robust.

C. Robotics Applications
Our goal is to enable safe and robust navigation for robots

in corridor environments. Some existing works use image
cues to navigate such as following vanishing points direction
[11], detecting wall-floor intersection landmarks [12] or
building a simplified 3D model [2], as mentioned above.
These methods usually work in specific environments with
specific viewpoints and are not applicable for corners, object
obstruction, curved corridors and poor lighting conditions.

III. APPROACH

A. CNN Model
CNNs are deep learning models that take advantage of of

the spatial structure of 2D image data to learn rich representa-

tions with a relatively small number of parameters. They have
recently revolutionized the state of the art in visual object
recognition [13]. As mentioned in Section II, CNNs have also
been recently adapted for the task of semantic segmentation.
The Fully Convolution Network (FCN) architecture of Long
et al. [14] and the DSN architecture of Eigen et al. [6] share
the central ideas of using “skip connections” to integrate
information across different scales and taking advantage of
the convolutional nature of the CNNs to perform pixelwise
labeling efficiently.

We design and implement a network based on the ideas
of FCN and DSN models. Like one of the FCN variations,
the network uses AlexNet [13] as its basis. We chose
AlexNet rather than VGG [15] or other models as it is
computationally more efficient. We also use deconvolutional
layers at multiple scales to create a semantic segmentation.
Our deconvolutional layers upsample the image in multiples
of two, as in DSN. Like FCN, we perform multiscale fusion
by channelwise summation, as opposed to concatenation. We
found this strategy to result in more compact and efficient
models, with little effect on accuracy.

Intuitively, this architecture first predicts a coarse output
at a very small resolution and then progressively refines it
by fusing it with finer-scale layers to provide both local and
global reasoning. Since the computation is fully feed-forward
and does not require any presegmentation or object proposal
step, it is extremely efficient.

Our model structure is shown in Figure 2. Compared to
the standard AlexNet, we decrease the strides of convolution
and pooling to get larger output size. Compared to FCN, we
use conv1 and conv4 as fusion layers instead of conv3
and conv4, in order to get more diverse features and a larger
output size. All the hidden layers use rectified linear units
for activations. Dropout is applied to fully-connected layers
conv6 and conv7. The input to the network is 320×240×3
RGB image and the first scale’s output is 1/16 of the input
image size. We bilinearly upsample (deconvolution) it to 1/8
scale and fuse it with conv4 layer to get the second scale’s
prediction. Again, we upsample and fuse it with conv1 layer
to get the third 1/4 scale output. It will be finally upsampled
to the desired image size.

For training, we minimize the pixelwise cross-entropy
loss:

L(C,C∗) = − 1

n

∑
i

C∗
i log(Ci) (1)

where Ci = ezi/
∑
c e
zi,c is the class softmax probability

at pixel i given the CNN convolution output z.

B. CRF model

Our CNN model effectively predicts the geometric layout
of the scene. However, it has some shortcomings. Due to
the relatively coarse output resolution, its predictions do not
always capture fine details in the image, as shown in Figure
4. Moreover, since we do not explicitly force smoothness,
the CNN sometimes creates misclassified patches and dis-
continuities. This has an adverse effect on the line-fitting and
pop-up stages of our methods (Section III-C). To fix these

2184

Fig. 2. Proposed CNN model containing three scales.

problems, we employ a fully connected dense CRF [16] to
refine CNN segmentation. Unlike an adjacency (grid) CRF,
the dense CRF models the pairwise connections between
all the image pixels, allowing long-range reasoning. To
make inference tractable, [16] proposes an efficient mean-
field inference method using Gaussian edge potentials. This
technique was also used in conjunction with CNN by [17],
showing impressive improvement over pure CNN.

Here we briefly describe this method. Let the prediction
for the n pixels be a vector x = (x1, · · · , xn). The dense
CRF assigns an energy function E(x) to the prediction as a
sum of unary potentials and binary potentials. The unary
potentials are the negative log likelihood of the softmax
probabilities computed by the CNN:

ψu(xi) = − logP (xi) (2)

The pairwise potentials enforce consistency between differ-
ent pixels defined as a weighted sum of Gaussian kernels
ψb(xi, xj) = µ(xi, xj)λi,j , where µ(xi, xj) = 1 if xi 6= xj ,
and λi,j is a function of position p and color intensity I:

λi,j = w1 exp

(
−‖pi − pj‖

2

2σ2
α

− ‖Ii − Ij‖
2

2σ2
β

)

+w2 exp

(
−‖pi − pj‖

2

2σ2
γ

) (3)

C. Pop-Up 3D model

To create a 3D model from the segmented image, we
implemented a simplified version of Hoiem’s image Pop-Up
[10]. We begin with a semantically labelled image, where
each pixel is given a hard classification corresponding to
the minimum energy in the Dense CRF (Section III-B). We
then find line boundaries in the image; instead of Hough

Fig. 3. Corridor dataset created from three sources, containing various
scenes with various view points. Left to right: SUN RGBD, SUN Database,
self-collected.

Transforms, we use Douglas-Peucker line simplification [18],
as we found it to be more robust.

Finally, we project the ground plane and each wall plane
to 3D space by assuming that walls are vertical relative to the
ground, i.e. the soft Manhattan assumption [2]. The appendix
details this step. The camera pose and calibration parameters
are needed in order to perform the projection. We assume the
camera is parallel to the ground with a height of h=1m. If
pose information is available from other sensors, this could
be used instead.

IV. IMPLEMENTATION AND TRAINING

A. Training dataset

This paper focuses on corridor environments, which mo-
bile robots operating indoors often have to traverse. Existing
indoor datasets such as the NYU Depth V2 dataset [19]
and the SUN RGBD dataset [20] are largely composed by
images of cluttered rooms, which are of less interest for our
purposes.

To our knowledge, there is no existing large image dataset
specifically for corridors. Therefore, we assembled our own
dataset1 for this work. Examples images are shown in
Figure 3. It contains 967 images from three sources: 349
images from the SUN RGBD [20] (category “corridor”);
327 images from SUN database [21] (category “corridor”)
and 291 images from self-collected video taken around the
Carnegie Mellon University campus. For the SUN database
images, we used annotations where available, and manually
annotated an extra 250 images using LabelMe [22]. For
benchmarking purposes, the dataset is split into 725 training
images (∼ 75%) and 242 testing images (∼ 25%).

All images are resized to 320×240. Images are annotated
with polygons corresponding to two classes: ground or non-
ground (wall). Ceilings were not labelled as they are not
important for most robot navigation purposes, but could be
easily included if necessary.

B. CNN Training

We decouple CNN and CRF parameter training, assuming
that the unary term in Equation 2 computed from the CNN

1Dataset is available at http://theairlab.org/
cmu-corridor-dataset/

2185

are fixed during CRF parameter searching. This is also the
only connection between the CNN and the CRF.

For the CNN training, the parameters are learned through
stochastic gradient descent to optimize the cross-entropy
loss defined in Equation 1. There is no data augmentation
such as random flip or rotations. We train the network in
stages corresponding to the different scales. The first scale
is initialized with the weights of the AlexNet model for
the MIT Places205 dataset [23]. Then the first two scales
are trained together. Finally, the full three scales are trained
together. The batch size is set as 16, learning rate as 0.0001
and momentum as 0.9. Each training process is optimized for
300 epochs until converges. We use the Theano library [24]
to compute the gradients and accelerate computation with
the GeForce GTX 980 Ti GPU. It takes around five hours to
train the network.

C. CRF parameter searching

CRF hyper parameters w1, w2, σα, σβ , σγ in Equation 3
are searched by cross-validation on a small subset (100)
images to achieve the highest mean IU metric (Intersection
over Union). Default values of w2 = 3 and σγ = 3
are used. The searching ranges of other parameters are:
w1 ∈ {5, 6, . . . 10}, σα ∈ {2, 6, . . . 12}, σβ ∈ {2, 4, . . . 10}.
The maximum optimization iteration is set as 10 for all
the experiments. Since CRF computation complexity grows
linearly with pixel numbers, we both downsample the raw
image and upsample the CNN output to 160× 120 in order
to speed up the prediction. We use the publicly available
implementation of fully connected dense CRFs [16].

D. Pop-up

After getting binary labelled images (160× 120) from the
CRF, we resize them to raw camera image size in order to
project them to 3D using camera calibration parameters. We
extract the boundaries using the Suzuki et al. algorithm [25]
and fit line segments using the Douglas-Peucker algorithm.
For these two algorithms, we use the implementation in
OpenCV.

V. EXPERIMENTS AND RESULTS

We evaluate the proposed method on two datasets. The
first is our mixture dataset test images (242 images) and the
second is the public Michigan-Milan Indoor Dataset [3] (84
images).

We use three common semantic segmentation metrics:
pixelwise accuracy, mean Intersection over Union (IU) and
Frequency Weighted IU (F.W. IU), which are also adopted
in [14]. For purposes of computation of these metrics, all
prediction label images are resized with nearest neighbor
resampling to the input image size.

A. Evaluation on our mixture data

1) Qualitative Results: We first qualitatively show the
performance of each of the three main steps in our method.
Examples of CNN prediction and CRF optimization are
shown in Figure 4. We can see that CRF can refine the

Fig. 4. CNN prediction and CRF optimization examples on our test
dataset. Row 1: CNN prediction; Row 2: CRF optimization. CNN prediction
captures the general location of ground. CRF further improves the spatial
consistence and captures fine details.

Fig. 5. 3D pop up examples from our test dataset. The first row is the raw
image and the second row is the pop-up 3D model. Since our algorithm
doesn’t predict the ceiling plane, we manually remove points above a
constant height threshold just for visualization. Since we use assumed a
camera pose, the 3D model is up to scale.

boundary, remove the extra misclassified ground regions
and discontinuous hollow patches. Examples of 3D Pop-Up
models are shown in Figure 5. Our algorithm works quite
well in various corridor types with various lighting conditions
and obstructions. To demonstrate the potential for robots’
navigation, we apply our algorithm on a video where we pop
up a 3D model for each frame independently. More results
are provided in the supplementary materials.

Finally, we compare with some other state-of-art methods:
Lee et al. [7] , Hoiem et al. [10] and Hedau et al. [8]. in
Figure 6. Our method works better, especially in curved,
homogeneous, and poorly lit corridors.

2) Quantitative Results: We also report the quantitative
results of each step in Table I. The number next to the name
is image size for operations in each step. Pop-up accuracy in
the last rows is the evaluation of the ground polygon, namely
the re-projected label from 3D cloud to image pixels. All
timings are measured on a desktop CPU (Intel i7, 4.0 GHz)
and GPU (for CNN). The algorithm takes about 0.07 s which
could run at 15Hz, or at 30Hz if CRF refinement is omitted.
In our mixture dataset, the CNN prediction achieves over
95% pixel accuracy of the ground-wall segmentation and the
CRF further improves mean IU by 1.5%. The CRF also has
a beneficial effect when using the Pop-up model, increasing

2186

Fig. 6. Qualitative comparison of corridor scene understanding. The first
row shows the input image and the outputs of four methods. Row 2: building
model by Lee et al. [7]. Ground region is shown in red. Row 3: box layout
estimates using Hedau et al.’s method [8]. Ground is in red. Row 4: surface
label prediction by Hoiem et al.’s [10] method. Ground is in cyan. Row 5:
our algorithm. Red lines are fitted line segments of ground boundaries.

mean IU by 2%.
On the other hand, the accuracy after pop up slightly

decreased. This is often due to excessive simplification of
segmentation boundaries when using line extraction in the
pop-up process. However, we need this line simplification in
order to pop up a 3D plane world for robot navigation. There
is a trade-off between getting higher segmentation accuracy
and building a simplified world model.

TABLE I
EVALUATION OF EACH STEP OF OUR METHOD ON OUR DATASET

Name Pixel Mean IU F.W. IU Test
accuracy(%) (%) (%) time(s)

CNN 320×240 96.42 87.10 93.43 0.031
CRF 160×120 96.83 88.69 94.20 0.037

Pop-up (No CRF) 95.19 84.86 91.80 0.003
Pop-up (With CRF) 96.16 86.97 93.07 0.003

A quantitative comparison against other models is shown
in Table II. Since other methods may predict the wall or
ceiling part, we only evaluate “ground” and “non-ground”
labels to make the metrics comparable. We use the publicly
available implementation of these methods, in Matlab and
C++. Since Hoiem et al. [10] also combine geometry mod-

elling with learning, we retrain the surface classifier in [10]
using our training dataset and show its results in the last
row. The success rate is defined as the percentage of images
which could generate valid 3D models by certain methods.
Since our method, as well as [10], doesn’t make assumptions
on the specific environment model or view points, it is more
robust than room layout [7], [8], which may not detect valid
vanishing points or enough lines segments to form feasible
room models. In all, our method performs much better than
others in terms of accuracy, speed and robustness.

TABLE II
EVALUATION COMPARISON ON OUR TRAINING DATASET

Name Pixel Mean IU F.W. IU Test Success
accu(%) (%) (%) time(s) rate(%)

Our method 96.16 86.97 93.07 0.071 100
Lee [7] 88.31 68.38 80.49 8.403 88.3

Hedau [8] 88.04 69.60 80.65 17.45 85.8
Hoiem [10] 87.96 70.12 81.12 1.355 100
Hoiem*[10] 92.09 75.44 86.32 1.355 100

* Retrained on our mixture dataset.

B. Evaluation on Michigan-Milan Indoor dataset

In order to show the generalization abilities of our method,
we directly test on this dataset without training or tuning
any parameters. We evaluate three scenes in this dataset:
Corridor, Entrance 1 and 2 since they are similar to corridor
environments. Qualitative examples and pop-up models using
the provided camera parameters are shown in Figure 7. Our
method generates good 3D models even in poor lighting and
occluded environments. Due to space constraints, we only
report the F.W. IU evaluation result in Table III. The trend
of other metrics is similar.

TABLE III
EVALUATION COMPARISON ON MICHIGAN-MILAN (F.W. IU %)

Name Corridor Entrance 1 Entrance 2

Our method 96.66 91.17 97.25
Lee [7] 79.99 80.54 97.80

Hedau [8] 87.39 90.70 92.94
Hoiem [10] 78.90 87.71 88.35

From the table, we can clearly see that our method outper-
forms others in the first two scenes. In the third scene, a very
structured Manhattan environment with clear boundaries, the
Building model collections of Lee et al. [7] outperforms our
method by a small margin.

VI. ANALYSIS

In this section, we analyse how the CNN learns and some
of our architectural choices, which contribute most to our
segmentation accuracy. We also discuss some limitations of
the algorithm.

2187

Fig. 7. Michigan-Milan dataset pop-up examples using our method. The
first row is segmentation and line fitting. The second row is pop up 3D
model. From left to right: Corridor, Entrance 1 and Entrance 2.

Fig. 8. CNN visualization. Top row: selected filters from first layer. Bottom
two rows: top three activation images of selected four neurons in layer
pool5. Each set represents certain corridor configurations such as straight
forward corridors and left turning corridors.

A. What is the CNN learning?

We first visualize some first-layer filters of the CNN in the
top row of Figure 8. The edges and corners filters in various
orientations are important cues to extract and reason about
the geometric structure. To visualize what the higher layers
of the CNN learn, we retrieve images that maximally activate
neurons in these layers. This gives us an understanding of
what the neuron is “looking for” in its receptive field [26].

We only select four neurons from pool5 layer due to
space constraints, and for each neuron, we display the top
three activation images as shown in the bottom two rows of
Figure 8. We can see that each set of them represents certain
corridor configurations such as long straight corridors, arched
ceilings, and dominant left- and right- facing walls.

B. Why a multiscale CNN?

We use a three-scale CNN to capture both global and
local information. Deconvolution layers increase not only the
output image resolution, but also segmentation accuracy. We
evaluate the contribution of different scales shown in the first
two rows in Table IV. By adding the third scale, the F.W.
IU increases by nearly 3%.

C. How does our model compare to other models?

We compare our model with another state-of-art multi-
scale CNN model DSN by Eigen et al. [6]. Differences from
this model are stated in Section III-A. We used our own im-
plementation of the model, as at the time of submission there
was no publicly available version. Since the DSN model has
many more parameters, we train it until convergence, for

TABLE IV
COMPARISON OF CNN DIFFERENT SCALES AND MODELS

Name Pixel Mean IU F.W. IU Output
accu(%) (%) (%) size

Scale 1+2 94.71 81.52 90.15 40×30
Scale 1+2+3 96.16 86.97 93.07 80×60

CNN [6] 95.58 85.15 92.25 147×109

Fig. 9. Pop-up model in a cluttered environment. Left two columns: person
and printer are wrongly popped as wall. Right column: the front-facing wall
in left region is wrongly popped as right-facing.

700 epochs. The result is shown in the last row of Table IV.
Our model outperforms DSN model in terms of segmentation
accuracy.

D. Limitations and future work

Figure 9 shows some pop-up models in cluttered en-
vironments. Our algorithm can roughly detect the correct
ground region, but the 3D model doesn’t exactly match the
scene geometry due to the following reasons. First, we only
model ground and wall so the cluttered objects such as
persons, chairs, printers, may be wrongly popped as wall
planes in the left two images of Figure 9. An extra object
detection step could be used to correctly pop these objects.
Second, the wall’s normal direction is computed based on the
corresponding wall-ground boundary. If the boundary cannot
be seen or detected correctly, the 3D model may not match
the true geometry. For example, in the third image of Figure
9, the front facing wall in the left region is mistakenly popped
as a right-facing wall. This is also a challenging problem for
many existing methods [7], [10]. One possible solution is to
separately model the wall and ground planes so that walls
can still be popped without a visible ground plane.

VII. CONCLUSIONS

In this paper, we have presented a system for reliable
real-time corridor layout understanding from a single image,
which is applicable for robot navigation. The key compo-
nents of our method are an efficient and accurate CNN+CRF
classifier to segment indoor images into two geometric
classes, and a pop-up algorithm that uses geometric con-
straints to create a simplified 3D model. We collected a large
dataset of various corridors with nearly 1000 images, and use
it to evaluate our method and other state-of-the-art algorithms

2188

for this task. We show that our method outperforms other
systems in accuracy while labeling frames at real-time rates.

In the future, we are interested in using multiple images
in videos to refine the 3D model and obtain accurate state
estimation. This could allow us to build a consistent 3D map.
We also would like to improve the modelling of cluttered
objects and wall planes to generate a more accurate and
complete scene interpretation. We will also test our algorithm
on real robots.

APPENDIX

A. Project segmented images to 3D model

Here, we show how to project ground and wall planes to
3D space efficiently as an extension to Section III-C. The
representation of a plane is π = (nT , d)T ∈ R4, where n, d
is normal vector and distance to origin respectively. Then a
3D point P = (X,Y, Z)T lies on plane iff nTP+d = 0. P is
also related to its image pixel p = (x, y, 1)T by P = λK−1p,
where λ is a parameter and K is calibration matrix. With
these two constraints, we can solve for P from p and π:

P =
−d

nT (K−1p)
K−1p (4)

Using the assumed pose, ground plane equation is π =
(0, 1, 0, 1) in camera space. Then we can project all ground
pixels including the boundary using Equation 4. The bound-
ary points also lie on the walls. Using the assumption that
wall is vertical to ground, we can thus compute all the plane’s
equation and project plane pixels using Equation 4.

ACKNOWLEDGMENTS
This research was sponsored by ONR (contract N0014-

13-C-0259) and Chinese Scholarship Council. The authors
would like to thank Yu Song for providing some suggestions.

REFERENCES

[1] Georg Klein and David Murray. Parallel tracking and mapping for
small ar workspaces. In Mixed and Augmented Reality, 2007. ISMAR
2007. 6th IEEE and ACM International Symposium on, pages 225–
234. IEEE, 2007.

[2] Grace Tsai, Changhai Xu, Jingen Liu, and Benjamin Kuipers. Real-
time indoor scene understanding using bayesian filtering with motion
cues. In Computer Vision (ICCV), 2011 IEEE International Confer-
ence on, pages 121–128. IEEE, 2011.

[3] Axel Furlan, Stephen Miller, Domenico G Sorrenti, Li Fei-Fei, and
Silvio Savarese. Free your camera: 3d indoor scene understanding
from arbitrary camera motion. In British Machine Vision Conference
(BMVC), page 9, 2013.

[4] Ashutosh Saxena, Min Sun, and Andrew Y Ng. Make3d: Learning
3d scene structure from a single still image. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 31(5):824–840, 2009.

[5] Kevin Karsch, Ce Liu, and Sing Bing Kang. Depth extraction from
video using non-parametric sampling. In Computer Vision–ECCV
2012, pages 775–788. Springer, 2012.

[6] David Eigen and Rob Fergus. Predicting depth, surface normals and
semantic labels with a common multi-scale convolutional architecture.
In Proceedings of the IEEE International Conference on Computer
Vision, pages 2650–2658, 2015.

[7] Daniel C Lee, Martial Hebert, and Takeo Kanade. Geometric reasoning
for single image structure recovery. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pages 2136–
2143. IEEE, 2009.

[8] Varsha Hedau, Derek Hoiem, and David Forsyth. Recovering the
spatial layout of cluttered rooms. In Computer vision, 2009 IEEE
12th international conference on, pages 1849–1856. IEEE, 2009.

[9] Alexander G Schwing, Tamir Hazan, Marc Pollefeys, and Raquel
Urtasun. Efficient structured prediction for 3d indoor scene under-
standing. In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pages 2815–2822. IEEE, 2012.

[10] Derek Hoiem, Alexei A Efros, and Martial Hebert. Recovering surface
layout from an image. International Journal of Computer Vision,
75(1):151–172, 2007.

[11] Cooper Bills, Joyce Chen, and Ashutosh Saxena. Autonomous mav
flight in indoor environments using single image perspective cues. In
Robotics and automation (ICRA), 2011 IEEE international conference
on, pages 5776–5783. IEEE, 2011.

[12] Kyel Ok, Duy-Nguyen Ta, and Frank Dellaert. Vistas and wall-
floor intersection features: Enabling autonomous flight in man-made
environments. In 2nd Workshop on Visual Control of Mobile Robots
(ViCoMoR): IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2012), pages 7–12, 2012.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems (NIPS), pages 1097–1105,
2012.

[14] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convo-
lutional networks for semantic segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
3431–3440, 2015.

[15] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. International Conference
on Learning Representations (ICLR), 2015.

[16] Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully
connected crfs with gaussian edge potentials. Advances in Neural
Information Processing Systems (NIPS), 2011.

[17] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin
Murphy, and Alan L Yuille. Semantic image segmentation with deep
convolutional nets and fully connected crfs. International Conference
on Learning Representations (ICLR), 2015.

[18] John Edward Hershberger and Jack Snoeyink. Speeding up the
Douglas-Peucker line-simplification algorithm. University of British
Columbia, Department of Computer Science, 1992.

[19] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus.
Indoor segmentation and support inference from rgbd images. In
Computer Vision–ECCV 2012, pages 746–760. Springer, 2012.

[20] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. Sun RGB-
D: A rgb-d scene understanding benchmark suite. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pages 567–576, 2015.

[21] Jianxiong Xiao, James Hays, Krista Ehinger, Aude Oliva, Antonio
Torralba, et al. Sun database: Large-scale scene recognition from
abbey to zoo. In Computer vision and pattern recognition (CVPR),
2010 IEEE conference on, pages 3485–3492. IEEE, 2010.

[22] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T
Freeman. Labelme: a database and web-based tool for image annota-
tion. International journal of computer vision, 77(1-3):157–173, 2008.

[23] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and
Aude Oliva. Learning deep features for scene recognition using places
database. In Advances in Neural Information Processing Systems
(NIPS), pages 487–495, 2014.

[24] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-
Farley, and Yoshua Bengio. Theano: a cpu and gpu math expression
compiler. In Proceedings of the Python for scientific computing
conference (SciPy), volume 4, page 3. Austin, TX, 2010.

[25] Satoshi Suzuki et al. Topological structural analysis of digitized binary
images by border following. Computer Vision, Graphics, and Image
Processing, 30(1):32–46, 1985.

[26] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik.
Rich feature hierarchies for accurate object detection and semantic
segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR), pages 580–587, 2014.

2189

